
px510.bk : TITLE.FM Page 1 Friday, September 12, 1997 9:38 AM
Imagenation
PX Family of Precision
Frame Grabbers

User’s Guide for the PX510 and PX610

px510.bk : TITLE.FM Page 2 Friday, September 12, 1997 9:38 AM
Copyright © 1995-1997, Imagenation Corporation. All rights reserved.
Imagenation Corporation
P.O. Box 276
Beaverton, OR 97075-0276

September 1997

P/N MN-510-02

or a
mits
r-
This
nd, if

y
is
, in
own

om-
ent

uld

px510.bk : FCC.fm Page i Friday, September 12, 1997 9:38 AM
FCC Notice

This equipment has been tested and found to comply with the limits f
Class A digital device, pursuant to part 15 of the FCC Rules. These li
are designed to provide reasonable protection against harmful interfe
ence when the equipment is operated in a commercial environment.
equipment generates, uses, and can radiate radio frequency energy a
not installed and used in accordance with the instruction manual, ma
cause harmful interference to radio communications. Operation of th
equipment in a residential area is likely to cause harmful interference
which case the user will be required to correct the interference at his
expense.

It is the responsibility of the user to use cables and equipment that c
ply with FCC regulations. For questions regarding cabling and equipm
please contact an Imagenation customer support representative.

Changes or modifications not expressly approved by Imagenation co
void the user’s authority to operate the equipment.

px510.bk : FCC.fm Page ii Friday, September 12, 1997 9:38 AM

Contents 1

. 1
..... 3
.... 4
.... 5
.... 5
.... 6
.... 6
.... 6
.... 7
.... 7
.... 8
.. 8
.... 8
.... 8
..... 9
.... 9
... 9
... 9
.. 10

px510.bk : px510toc.fm Page iii Friday, September 12, 1997 9:38 AM
1. Introduction .
Precision Capture Hardware ...
Video Inputs and Formats..
Video Capture Modes and Resolution ...

Image Capture Modes ...
Capture Resolution..

Real-Time Image Data Transfer ..
PCI Bus Master Design...
Selectable Destination for Image Captures...............................

Processing Video Input..
Offset and Gain Adjustments..
Input Lookup Table (LUT) ...

Input/Output...
Trigger...
Strobes..
Output Sync Signals..

Optional Video Cache RAM...
Programming Libraries and DLLs..
The PCIVU Program ...
 iii

Imagenation

. 11
. 11
. 11
. 11
. 11
... 12

... 13

... 13

... 13
. 14
.. 16
 16
. 21
 23
. 26
.. 26
 27
 27
 27
. 28
.. 28
.. 29

1
. 31
.. 32
 32
. 33

5
.. 36

px510.bk : px510toc.fm Page iv Friday, September 12, 1997 9:38 AM
Utility Programs..
FILEIT ...
PXREV...
VGACOPY ..
PXCLEAR ...

Next Steps... ..

2. Installing Your Frame Grabber 13
Do You Need a Cable? ...

Standard PCI-Bus Cables...
PC/104-Plus Cables..

Installing Your Board ...
Installing the Software ...

DOS, DOS/4GW, and Windows 3.1 Software Installation
Windows 95 Software Installation...
Windows NT Software Installation...
PX Software Directories ..

Troubleshooting ...
Error Loading DLL ...
Error Loading VxD ...
Problems Running PCIVU or PXREV
Slow Video Display Performance..
Windows Hangs or Crashes on Boot ..

Technical Support ..

3. The PCIVU Application . 3
Setting Up PCIVU ..
Starting PCIVU..

Running PCIVU with More Than One Frame Grabber..............
Using PCIVU..

4. Programming PX Frame Grabbers 3
General Library Characteristics ...
iv

Contents

... 37
.. 37
. 38
. 38
. 39
. 40
41
. 42
44
.. 46
47
... 47
... 48
.. 48
 50
. 51
. 52
.. 54
.. 55
. 55
.. 56
... 57
.. 58
.. 58
... 59
. 60
 60
 61
. 61
.. 62
.. 62
.. 63
. 63
. 63
. 64
. 64

px510.bk : px510toc.fm Page v Friday, September 12, 1997 9:38 AM
Operating System and Language Specifics
DOS Programming..
Watcom DOS/4GW Programming ..
Windows 3.1 Programming ...
Windows 95 Programming ..
Windows NT Programming ...
Programming in a Multithreaded, Multitasking Environment....
Visual Basic Programming ..

Initializing and Exiting the Library ...
Allocating and Freeing Frame Grabbers..

The PXCLEAR Utility..
Grabbing Images...

Frames..
Functions for Grabbing to Frames ..
Sending Images Directly to Another PCI Device
Sending Images to the Onboard Video Cache RAM
Grabbing Images with Non-Standard Video Formats................
Accessing Frame Data ..

Setting Video Offset and Gain...
Video Offset ...
Video Gain ..

Selecting Camera Inputs ...
Input/Output...

Trigger...
Strobes..
Synchronization Drive Signals...

Using the Input Lookup Table (LUT)..
Getting Information about Incoming Video

Checking Pixel Values ...
Video Format ..
Counting Fields...

Reading Frame Grabber Information...
Video Cache RAM...
Board Revision Number...
Hardware Protection Key...
Board Configuration ..
 v

Imagenation

. 64
.. 65
 67

... 67
. 67
.. 68
. 68
. 70
.. 71
.. 71
.. 73
.. 75
.. 75
. 75
. 75
 76
 77
... 78

 79

1
22
122
123
. 124
. 127
127
128
 133
 137
138

px510.bk : px510toc.fm Page vi Friday, September 12, 1997 9:38 AM
Timing the Execution of Functions ..
Queued Functions ...
Synchronizing Program Execution to Video
Purging the Queue..
Queue Structure under Windows NT...
Immediate Functions...
Function Timing Summary ..

Using Flags with Function Calls...
Specifying Image Capture Resolution ...

Scaling Images ..
Cropping Images ...
Grayscale Resolution ..

Frame and File Input/Output..
BMP Files ..
Binary Files ..

Using the Video Display DLL ...
Developing a Menu-Based User Interface for DOS Applications...
Frame Grabbing and PCI Bus Performance

5. Function Reference .

6. VESAMENU Library . 12
Initializing and Exiting the Library ... 1
VGA Text and Image Display ...
Menu Creation, Configuration, and Display..................................
Menu Structures and Types ..
Function Reference ...

VESA and VGA Functions ...
VESA Text Functions ...
Menu Functions...
Graphics Functions ...
Editing Functions ..
vi

Contents

. 140

. 141
. 142
. 144
. 146

9
 149
 149
50
50
 150
50
151
 151
 151
 151
152
152
 153
153

55
. 155
 156
157
157
. 157

9

61

px510.bk : px510toc.fm Page vii Friday, September 12, 1997 9:38 AM
7. The FILEIT File Conversion Program 139
Syntax ...
Examples...
Return Values ...
Batch File Processing..
Notes on Format Conversions...

A. PX500 Compatibility . 14
New Features in the PX510 and PX610 ..

Non-Interlaced, Progressive-Scan Video Support
Horizontal and Vertical Cropping and Scaling 1
Horizontal and Vertical Sync Drive Signals 1
Programmable Strobe Lines..
Full-Size (768x576) CCIR/PAL Images................................... 1
+12V Power Line..
26-Pin D Connector ..

Changes in the PX Libraries ..
New Strobe Functions...
New Sync Drive Signal Functions..
New Video Format Functions ...
Other New Functions ..
Changes to Existing Version 1.x Functions..............................

B. Cables and Connectors . 1
Standard PCI Bus and CompactPCI Bus Cables

26-pin D Connector...
Connecting the +12V Output ..
26-Pin to 15-Pin Adapter for PX500 Cables.............................

PC/104-Plus Cables ..

C. Hardware Specifications . 15

D. Block Diagram . 1
 vii

Imagenation

63
 163
 165
 165
. 165

167

px510.bk : px510toc.fm Page viii Friday, September 12, 1997 9:38 AM
E. PCI Bus System Performance. 1
VGACOPY Measurements..
VGACOPY Tests...

Configurations Tested ...
Test Results ..

Index.
viii

o
cy.

mes

px510.bk : INTRO.FM Page 1 Friday, September 12, 1997 9:38 AM
Introduction 1

The Imagenation PX family of frame grabbers features precision vide
capture hardware for applications that require high grayscale accura
Features of the precision hardware design include:

• High grayscale accuracy with low pixel jitter
• Support for resettable cameras
• Accurate sync timing to the first field of the incoming data
• Image capture at 30 frames per second in NTSC mode, 25 fra

per second in CCIR/PAL mode
• Horizontal and vertical cropping and scaling
• Captures of single fields or frames, or continuous captures
• Captures starting at field 0, field 1, or the next field that occurs
• Four multiplexed video inputs
• Real-time transfer of image data to main memory via Direct

Memory Access (DMA), directly to the display or other PCI
device, or to the optional onboard video cache RAM

• Adjustable offset and gain
• Input lookup table
• Digital TTL-level trigger input
• Two programmable TTL-level strobe lines
• Horizontal and vertical sync output
• +12V output for powering cameras or other devices

1

 1

Imagenation

or
CPU

ve-

er,

04-
n is
m-
-sys-

s an

d

-

px510.bk : INTRO.FM Page 2 Friday, September 12, 1997 9:38 AM
The PX family includes these frame grabbers:

PX510. All of the features listed above configured with a PCI bus f
real-time performance. The PCI bus master design frees the main
for other processing and lets you capture images directly to main
memory or other PCI devices.

PX610. All of the features of the PX510, plus support for progressi
scan cameras with non-interlaced video output.

The PX510 and PX610 are replacements for the PX500 frame grabb
and incorporate several new features. For more information, see Appen-
dix A, PX500 Compatibility, on page 149. Both the PX510 and PX610
are available in configurations for the standard PCI bus, for the PC/1
Plus bus, and for the CompactPCI bus. The CompactPCI configuratio
a single height, 3U board with a operating voltage of 5V only. The Co
pactPCI and PC/104-Plus configurations are designed for embedded
tems applications.

To make it easy to tap these hardware features, the PX family include
elegant software interface that supports developing applications for
16-bit DOS, Watcom 32-bit DOS/4GW, Windows 3.1, Windows 95, an
Windows NT:

• C libraries for building DOS applications
• DLLs for building Windows applications
• VESAMENU DOS library for building a menu-based user inter

face
• Sample DOS and Windows source code
• PCIVU—a DOS image capture application
• FILEIT—a DOS file conversion program that supports many

standard graphics file formats

This chapter will give you an introduction to these features. More
detailed technical information on features is included in Chapter 4, Pro-
gramming PX Frame Grabbers, on page 35.
2

Chapter 1 Introduction

le

fic

ban-
 as

 new
 may
e.

either

r it
nal

n-
e a
.
f the

px510.bk : INTRO.FM Page 3 Friday, September 12, 1997 9:38 AM
Precision Capture Hardware

The design of the PX video capture hardware produces high graysca
accuracy, low pixel jitter, and precise sync timing:

Grayscale noise—0.8 LSB maximum

Pixel jitter —±3 ns maximum

Sync Timing—syncs to the first field of the incoming signal

This accuracy makes PX frame grabbers ideal for demanding scienti
and industrial applications.

Working with Resettable Cameras

PX frame grabbers tolerate erratic video sources and work well with
resettable cameras. In industrial applications, it is often desirable to a
don the normal video timing to control when exposure will occur, such
when a moving object is in position.

Resettable cameras accept a reset pulse at arbitrary times to begin a
exposure and to restart the video output. This means the video fields
be out of order, and vertical and horizontal sync may occur at any tim
When the camera receives a reset pulse, it can respond by sending
a vertical sync or a window enable (WEN) signal.

By default, a PX frame grabber will vertically re-synchronize wheneve
sees a vertical sync waveform in its video input or detects a WEN sig
on the trigger input. The line number and the video field are both re-
established with each vertical sync or WEN signal.

A PX frame grabber will horizontally re-synchronize within one horizo
tal period. Video inputs with a missing horizontal sync pulse will caus
line of video to be skipped and the internal line count to be off by one
VCRs and camcorders often drop horizontal sync pulses at the end o
 3

Imagenation

stab-

ats:

t-

re
-
tor.

deo

e
 of

 arti-

AL
ch

ras
ng-
d,

px510.bk : INTRO.FM Page 4 Friday, September 12, 1997 9:38 AM
video field. This is of no consequence because the line count is re-e
lished during the subsequent vertical sync prior to the next field.

Video Inputs and Formats

The PX frame grabbers handle multiple camera inputs and video form

Connect up to Four Cameras. Switch between camera inputs in sof
ware. On the PX510 and PX610 standard PCI-bus versions, video
input 0 is provided through a BNC connector, and all four inputs a
available through the 26-pin D connector. On the PC/104-Plus ver
sions, all four video inputs are available through the 20-pin connec

A PX frame grabber automatically synchronizes to the selected vi
source.

Use Either NTSC or CCIR/PAL Video Formats. PX frame grabbers
support both the 60 Hz North American NTSC format and 50 Hz
European CCIR/PAL format.

Capture from Progressive-Scan Cameras with Non-Interlaced
Output (PX610 only). Standard cameras expose the CCD array in
alternating fashion: on one cycle the odd rows are exposed; on th
other, the even rows. This corresponds to the odd and even fields
the interlaced data output format of standard NTSC or CCIR/PAL
video. Unfortunately, this exposure scheme can produce an image
fact called field flicker or interlace flicker, caused by an object in an
image moving far enough in 1/60 second (1/50 second for CCIR/P
video) for the object to be in two obviously different places when ea
field is exposed.

Progressive-scan cameras expose the entire CCD array simulta-
neously, thus eliminating field flicker. Some progressive-scan came
can output the standard NTSC- or CCIR/PAL-compatible alternati
fields format. Others output the data in row-order, or non-interlace
4

Chapter 1 Introduction

 sig-

t
n

how
with

r

ideo

 the
ith

px510.bk : INTRO.FM Page 5 Friday, September 12, 1997 9:38 AM
fashion. The PX610 can handle both interlaced and non-interlaced
nals.

Use with color cameras. PX frame grabbers include a color filter tha
eliminates the color burst from video signals so it doesn’t appear i
captured images.

Video Capture Modes and Resolution

When you capture images with a PX frame grabber, you can specify
you want to start the capture process, and whether you want to work
all or with just a subset of the total image data.

Image Capture Modes

There are three ways to capture images with a PX frame grabber:

Software-initiated grab. On a command from an application pro-
gram, the board grabs a single frame or field.

Triggered grab. The board waits for an external trigger and then
grabs the frame.

Continuous acquire. In this mode, the board grabs one image afte
another. Continuous acquire is useful for applications that need to
watch for changes between successive images, and for sending v
data directly to other PCI devices.

With any of these modes, you can start the capture at the next field in
incoming video signal, or you can specify that the capture will start w
field 0 or field 1.
 5

Imagenation

 768
. On
on-
SC
ls

ion
ti-
nd
her

e
 dis-

ber
her
ans-
n or

nd
ally

px510.bk : INTRO.FM Page 6 Friday, September 12, 1997 9:38 AM
Capture Resolution

PX frame grabbers sample at a horizontal resolution of either 640 or
pixels per scan line and a vertical resolution of one pixel per scan line
a typical display monitor with a 4 x 3 aspect ratio, the 640-pixel horiz
tal resolution results in approximately square pixels for images in NT
video mode; the 768-pixel horizontal resolution results in square pixe
for images in CCIR/PAL video mode.

If you don’t need to work with all of the image data, you can scale the
image horizontally and vertically. Scaling is accomplished by decimat
(discarding pixels). You can also crop the image horizontally and ver
cally. By transferring only a subset of the image, you save memory a
bandwidth on the bus, leaving more of both resources available to ot
parts of your application and to other applications.

Grayscale resolution is eight bits, providing 256 shades of gray.

Real-Time Image Data Transfer

The PCI bus master design of the PX frame grabbers lets you achiev
real-time performance for captures to main memory or directly to the
play.

PCI Bus Master Design

The bus master design of the PX frame grabbers lets the frame grab
directly control the transfer of image data to main memory or to anot
PCI device, such as a display controller. While the frame grabber is tr
ferring data, the main CPU is free to run other parts of your applicatio
other applications.

Data transfers can take advantage of the maximum 132 MB per seco
burst transfer rate of the PCI bus. Although actual throughput is typic
6

Chapter 1 Introduction

 sup-

:

y
ns-
ng.

o

ss
y.

ts,

px510.bk : INTRO.FM Page 7 Friday, September 12, 1997 9:38 AM
well below the maximum burst rate, a properly-designed system can
port real-time transfer and display of video image data.

Selectable Destination for Image Captures

You can specify one of three destinations for the image capture data

A buffer in main memory. The data is transferred via direct memor
access (DMA) to a buffer in the computer’s main memory. The tra
fer is fast, and the data is available in memory for further processi

Another memory-mapped device. The data is transferred via DMA
directly to another PCI device. For example, some PCI VGA cards
support such transfers, which can be used to display live video.

Onboard video cache RAM. The data is placed in the optional vide
cache RAM on the frame grabber. Putting data directly into the
onboard cache RAM doesn’t use any bus bandwidth, but to proce
the data, you must read the data from the cache into main memor

Processing Video Input

The PX frame grabber hardware supports offset and gain adjustmen
and an input lookup table (LUT). Video signals are processed by the
board as shown in this block diagram:

Offset
& Gain

ADC
Input
LUT

Video IN

To Main
Memory,

PCI Device,
or Onboard

Cache
 7

Imagenation

rk

ses
 a

be
d to

 can
ing

puri-
ct a

px510.bk : INTRO.FM Page 8 Friday, September 12, 1997 9:38 AM
Offset and Gain Adjustments

The offset adjusts the D.C. video level up or down in 256 steps. This
allows a bright video peak to be brought down to digital zero, or a da
video level to be boosted up to digital 255.

You can adjust the video gain from 1/2 to 8, in 1,024 steps.

Input Lookup Table (LUT)

The PX frame grabbers have an input lookup table (LUT). Video pas
through the input LUT. The LUT is a 256-byte RAM that can perform
variety of grayscale pixel translations. You can use the LUT to adjust
contrast, or to perform gamma corrections.

Input/Output

PX frame grabbers include I/O features that let you synchronize the
frame grabber with other devices in the system.

Trigger

PX frame grabbers have an external TTL-level trigger input that can
used to trigger an image capture. A simple push button switch attache
this input can be used like a camera shutter button. The trigger input
be programmed to respond to either low or high logic levels, or to ris
or falling edges.

Mechanical switches used as the trigger input can bounce, creating s
ous edges, when opening or closing. Through software, you can sele
debounce delay to help avoid this problem.
8

Chapter 1 Introduction

es
as

ori-
r.
era.
es as
o or

gle

ver-
, all
n

ing

g

px510.bk : INTRO.FM Page 9 Friday, September 12, 1997 9:38 AM
Strobes

PX frame grabbers have two software-controlled TTL-level strobe lin
that can be used to send signals to external hardware devices, such
resettable cameras.

Output Sync Signals

As in most frame grabbers, the video input signal is used to supply h
zontal and vertical synchronization information to a PX frame grabbe
In addition, PX frame grabbers can supply sync information to a cam
The frame grabber can supply this sync to the same camera that serv
the video source or to another camera, which lets you synchronize tw
more cameras.

Optional Video Cache RAM

PX frame grabbers offer optional video cache RAM that can hold a sin
image frame of up to 768 x 576 pixels. Since you can grab images
directly to the computer’s RAM, you won’t need a video cache on the
frame grabber for many applications. However, the PCI bus can be o
loaded if several PCI devices, such as frame grabbers or VGA cards
try to transfer large blocks of data at the same time. If your applicatio
tends to overload the bus, consider adding video cache RAM to the
board.

Programming Libraries and DLLs

For custom applications, the PX software includes support for writ
your own frame grabber programs. The library and DLL functions
take care of the details of low-level hardware control for you, lettin
you concentrate on getting your application working.
 9

Imagenation

-
st
.

OS/
ics

S
ries

 to
s,

 and
ll

px510.bk : INTRO.FM Page 10 Friday, September 12, 1997 9:38 AM
C Libraries for DOS. Write 16-bit DOS programs using the 16-bit
library with either Borland or Microsoft C compilers, or write 32-bit
DOS programs using the Watcom DOS/4GW library.

DLLs for Windows. Write 16-bit or 32-bit Windows programs for
Windows 3.1, Windows 95, and Windows NT with C compilers from
Borland and Microsoft, or with Visual Basic. The PX DLLs are stan
dard Windows DLLs, and you should be able to use them with mo
Windows development tools that can make calls to Windows DLLs

VESAMENU Library for DOS. Use the VESAMENU library to cre-
ate a menu-based user interface for your 16-bit DOS and 32-bit D
4GW applications that allows you to simultaneously display graph
and text.

Sample source code. Sample source code is provided, for both DO
and Windows, to show you how to use various features of the libra
and DLLs.

Chapter 4, Programming PX Frame Grabbers, on page 35, describes the
main features of the PX hardware and software and how to use them
build applications. For reference information on all PX library function
see Chapter 5, Function Reference, on page 79. The VESAMENU library
and its functions are described in Chapter 6, VESAMENU Library, on
page 121.

The PCIVU Program

The PX software includes a DOS frame grabber application called
PCIVU. Using PCIVU, you can capture images, save images to disk,
adjust many of the image capture features of a PX frame grabber—a
without writing a single line of code. For more information, see Chapter
3, The PCIVU Application, on page 31.
10

Chapter 1 Introduction

,

 for
s
ou
s.

of
 dis-
pro-

l the
are
not
 in

px510.bk : INTRO.FM Page 11 Friday, September 12, 1997 9:38 AM
Utility Programs

The PX software also includes several utility programs.

FILEIT

If you save images in binary files, you can use the FILEIT program to
convert the files to standard graphics file formats, such as TIFF, BMP
and GIF. The FILEIT program is described in Chapter 7, The FILEIT File
Conversion Program, on page 139.

PXREV

If you need to contact Imagenation Technical Support, you’ll be asked
your board’s revision number. PXREV is a DOS program that display
the revision number for any frame grabbers it finds in your system. Y
must run this program from DOS, not from a DOS window in Window

VGACOPY

VGACOPY is a test program that lets you evaluate the performance
your computer for grabbing images and copying the data to the VGA
play in DOS. For similar tests in Windows, see the Windows sample
grams PXGDI1, PXGDI2, and PXGDI3.

PXCLEAR

The PXCLEAR utility for Windows 3.1 and Windows 95 frees frame
grabbers when a program terminates unexpectedly and does not cal
required exit procedures. PXCLEAR tells you which frame grabbers
currently in use, and gives you the option of freeing all of them. It can
be used to free individual frame grabbers; it frees all frame grabbers
 11

Imagenation

px510.bk : INTRO.FM Page 12 Friday, September 12, 1997 9:38 AM
the system or none of them. For more information, see The PXCLEAR
Utility, on page 47.

Next Steps...

For... See...

Installing your PX frame grabber Chapter 2, Installing Your Frame
Grabber, on page 13

More in-depth information on PX
features

Chapter 4, Programming PX Frame
Grabbers, on page 35

Writing your own frame grabber
applications

Chapter 4, Programming PX Frame
Grabbers, on page 35
Chapter 5, Function Reference, on
page 79
Chapter 6, VESAMENU Library, on
page 121

Connector and cabling specifica-
tions

Appendix B, Cables and Connec-
tors, on page 155

A PX board block diagram Appendix D, Block Diagram, on
page 161
12

the
ional
o

use
nec-

ab-

px510.bk : INSTALL.FM Page 13 Friday, September 12, 1997 9:38 AM
Installing Your Frame
Grabber 2

Do You Need a Cable?

Standard PCI-Bus Cables

The two BNC connectors on the standard PCI-bus configurations of
PX510 and PX610 boards let you attach one video source and an opt
trigger. Additional video sources (you can connect a total of four), tw
strobe outputs, two synchronization drive signal outputs, and a +12V
power source are also available by using the 26-pin D connector. To
the 26-pin connector, you’ll need a cable with the correct mating con
tor and pinouts. For information on making or purchasing cables, see
Appendix B, Cables and Connectors, on page 155.

PC/104-Plus Cables

You’ll need a cable to attach to the 20-pin IDC connector on frame gr
bers with the PC/104-Plus configuration. For information on making
cables, see Appendix B, Cables and Connectors, on page 155.

2

 13

Imagenation

e
ch,

ured
on

ster-
ter-

px510.bk : INSTALL.FM Page 14 Friday, September 12, 1997 9:38 AM
Installing Your Board

Follow the instructions below to install your board:

1 Turn off and unplug your computer, then remove its cover.

Caution
Static electricity can damage the electronic components on th
PX board. Before you remove the board from its antistatic pou
ground yourself by touching the computer’s metal back panel.

2 If you’ll be using the frame grabber with a color camera, you must
enable the color filter so that the color burst doesn’t appear in capt
images. To enable the color filter, set the color filter switch, SW7,
the board to OFF (setting the switch to ON disables the filter).

3 Install the PX board as follows:

For a standard PCI-bus board:

a Locate an unused PCI expansion slot that is enabled for bus ma
ing. On some systems, you must enable a PCI slot for bus mas
ing by using a switch or jumper on the system board, or by
changing the BIOS settings. Refer to the manual that came with
your computer for more information.

b Remove the cover plate. Save the screw.

c Insert the PX board into the slot and seat it firmly.

d Secure the board’s cover plate using the screw you saved.
14

Chapter 2 Installing Your Frame Grabber

d
ique

st

ke a

.

er.

ce,”

px510.bk : INSTALL.FM Page 15 Friday, September 12, 1997 9:38 AM
For a PC/104-Plus board:

a Set the four-position rotary switch on the PX board to an unuse
number. Each PC/104-Plus plug-in module must be set to a un
number.

b Insert the PX board into the connector and seat it firmly.

4 Following the instructions below, connect your board to the video
input and, optionally, to other I/O:

For a standard PCI-bus board:

BNC connectors. Connect your video source to the connector
closest to the 26-pin D connector (see diagram at left). If you’re
using an external trigger, connect it to the BNC connector farthe
from the 26-pin D connector.

26-pin D connector. If you’re using the 26-pin D connector, con-
nect your cable to that connector. If you need to purchase or ma
cable, see Appendix B, Cables and Connectors, on page 155.

For a PC/104-Plus board:

Attach your cable to the 20-pin IDC connector on the PX board
For information on making cables, see Appendix B, Cables and
Connectors, on page 155.

5 Replace the cover on the computer, plug it in, and turn on the pow

6 This step applies to Windows 95 only. When you restart your sys-
tem, you might see the message “Found new multimedia PCI devi
and the Add New Hardware Wizard is displayed. If this happens, fol-
low the steps below:

a Insert the Windows 95 PX software installation disk in the drive.

TRIG

VIDEO
 15

Imagenation

ing
c-

X

e

ck
 of

px510.bk : INSTALL.FM Page 16 Friday, September 12, 1997 9:38 AM
b In the wizard, click the Have Disk button.

c In the Install from Disk dialog, specify the drive letter for the
floppy disk drive and click OK.

You should see a single option, PX Precision Frame Grabber,
listed in the wizard.

d Select PX500 Precision Frame Grabber and click Next.

e Click Next again to let Plug and Play complete the installation.

You should see a message that Windows hasn’t finished install
the necessary software. You’ll install the software in the next se
tion.

f Click Finish.

7 That completes the hardware installation. Next, you’ll install the P
software.

Installing the Software

The PX family of frame grabbers can be used with DOS, DOS/4GW,
Windows 3.1, Windows 95, and Windows NT. Refer to the appropriat
section below for the operating system you are running.

DOS, DOS/4GW, and Windows 3.1 Software
Installation

1 This step applies only to DOS; if you’re not using DOS, skip to the
next step. The frame grabber needs a vacant 4 KB block of system
memory in segment 0xD000 or in segment 0xE000. The 4 KB blo
of memory must be aligned on a 4 KB boundary; that is, it must be
16

Chapter 2 Installing Your Frame Grabber

e

.

u
 to

d
nt,

px510.bk : INSTALL.FM Page 17 Friday, September 12, 1997 9:38 AM
the form 0xD?00-0xD?FF or 0xE?00-0xE?FF, where ? is the same
hexadecimal digit in both the beginning and ending numbers of th
range. For example, 0xD200-0xD2FF or 0xEA00-0xEAFF.

To make a memory block available for the frame grabber:

a Make sure the block is not used by any other hardware devices
You can use the Microsoft diagnostics program MSD to display
memory usage. (MSD comes with DOS and Windows.)

b Modify the entry in CONFIG.SYS for your memory manager to
prevent it from using the block. For example, if you are using
EMM386, and you want to use 0xE000-0xE0FF for the frame
grabber, add x=e000-e0ff to the end of the EMM386.EXE
entry in your CONFIG.SYS:

device=c:\dos\emm386.exe noems x=e000-e0ff

If you’re using another memory manager, like QEMM or
386MAX, consult your manual.

2 This step applies only to Watcom DOS/4GW; if you’re not using
DOS/4GW, skip to the next step. The PX library for Watcom DOS/
4GW requires the special memory manager FLATMEM.COM. If yo
want to use the Watcom PX library, you must add the following line
your CONFIG.SYS file before the lines for HIMEM.SYS and
EMM386.EXE:

device=c:\px5\bin\flatmem.com 1024

The 1024 parameter specifies the amount of memory in KB reserve
for frame allocation. You can allocate as much memory as you wa
up to 1 MB less than the total amount of RAM in your system, but
 17

Imagenation

ther

for
han

l-
-

for

o

and

px510.bk : INSTALL.FM Page 18 Friday, September 12, 1997 9:38 AM
keep in mind that the memory you allocate can’t be used for any o
purpose than storing frames.

Note
This method of reserving memory is only guaranteed to work
systems with no more than 64 MB of RAM. If you have more t
64 MB, contact Imagenation technical support for assistance.

3 Insert the DOS/Windows 3.1 installation diskette in the floppy drive.

4 The diskette includes two installation programs, one for DOS and
another for Windows. The DOS INSTALL.EXE program installs only
the DOS and DOS/4GW software, not the Windows software; the
Windows SETUP.EXE program installs all three. Decide which insta
lation program you want to use, and follow the appropriate instruc
tions below:

DOS and DOS/4GW only

a At the DOS prompt, type (substitute the appropriate drive letter
“a”) a:\install and press Enter.

b When the INSTALL program has completed, reboot your com-
puter.

c After rebooting your system, you can use the PCIVU program t
verify that your frame grabber is correctly installed. For instruc-
tions on running PCIVU, see Chapter 3, The PCIVU Application,
on page 31. If an error message appears when you try to start
PCIVU, see Troubleshooting, on page 26.

Windows, DOS, and DOS/4GW

a From the Program Manager in Windows, choose the File menu
select Run.

b In the Command Line box, type a:\setup , and click OK.
18

Chapter 2 Installing Your Frame Grabber

e
.

pre-
 if
ify
s.

r to
-
s

px510.bk : INSTALL.FM Page 19 Friday, September 12, 1997 9:38 AM
c When the SETUP program has completed, restart Windows.

Setup creates a new program group called PX.

d After restarting Windows, you can run one of the PXGDI sampl
programs to verify that your frame grabber is correctly installed
The sample programs are in the c:\px5\bin directory. If you have
problems running the sample programs, see Troubleshooting, on
page 26.

Changes to System Files for DOS and Windows 3.1

The installation programs will, at your option, modify your
AUTOEXEC.BAT and SYSTEM.INI (SETUP only) files. The changes
are listed below so that you can make your own modifications, if you
fer. The installation programs do not look for their own modifications;
you run the installation programs more than once, don’t let them mod
your system files unless you have removed the previous modification

AUTOEXEC.BAT Changes for DOS and Windows 3.1

REM Imagenation’s Modifications
set path=c:\px5\bin;%path%
set imagenation=c:\px5
REM Imagenation’s Modifications End

Adding c:\px5\bin to your PATH makes the samples and utilities easie
execute. The IMAGENATION environment variable specifies the loca
tion of files required by the PCIVU application. PCIVU won’t run unles
this variable is correctly defined.

After your AUTOEXEC.BAT file is modified, you must reboot your
computer for the changes to take effect.
 19

Imagenation

n-

-

h
uff-

te
xit

YS
e

px510.bk : INSTALL.FM Page 20 Friday, September 12, 1997 9:38 AM
SYSTEM.INI Changes for Windows 3.1

[386Enh]
; Imagenation’s Modifications
device=c:\px5\bin\px500.vxd
px500_size=256
; Imagenation’s Modifications End

The PX Windows Virtual Device Driver (VxD), PX500.VXD, is added to
the [386Enh] section. The VxD will be loaded only when you start Wi
dows. The PX DLL, WPX5.DLL, requires this VxD; the DLL will not run
unless the VxD is installed. After running Setup, you must restart Win
dows to load the VxD.

The memory allocation variable, px500_size, is set to the amount of
memory you specified during Setup. This variable specifies how muc
physical memory, in 4 KB blocks, the VxD should reserve for frame b
ers.

Caution
If you allocate more memory for frame buffer storage than
Windows 3.1 can spare, Windows 3.1 will abort during boot,
returning to DOS with the message “PX???.VXD cannot alloca
the requested amount of memory.” If this happens, you must e
Windows and reduce the frame buffer allocation by editing the
SYSTEM.INI file. You should leave at least 4 MB available to
Windows; for example, if you have 8 MB of RAM in your com-
puter, don’t allocate more than 4 MB to frame buffers.

Changes to System Files for Watcom DOS/4GW

The installation programs don’t make any changes to your CONFIG.S
or AUTOEXEC.BAT files for Watcom DOS/4GW. If you want to use th
Watcom DOS/4GW environment, you must make the changes listed
below yourself.
20

Chapter 2 Installing Your Frame Grabber

ry

o

it
at

-

px510.bk : INSTALL.FM Page 21 Friday, September 12, 1997 9:38 AM
CONFIG.SYS Changes for Watcom DOS/4GW

The PX library for Watcom DOS/4GW requires the special memory
manager FLATMEM.COM. If you want to use the Watcom PX library,
you must make a change to your CONFIG.SYS file to load the memo
manager. For the specific change needed, see Step 2 on page 17.

AUTOEXEC.BAT Changes for Watcom DOS/4GW

If you want to run the sample programs for Watcom DOS/4GW, the
c:\px5\bin directory must be in your path. You can add the directory t
your path by adding the following line to the end of your
AUTOEXEC.BAT file:

set path=c:\px5\bin;%path%

Windows 95 Software Installation

1 If you previously installed the Windows 3.1 PX driver, you must ed
the [386Enh] section of the SYSTEM.INI file to remove the lines th
load the 16-bit VxD, PX500.VXD. For more information, see
SYSTEM.INI Changes for Windows 3.1, on page 20.

2 Put the Windows 95 installation disk in the floppy drive.

3 Click the Start button and click Run.

4 For the name of the program, type a:\setup and click OK.

5 Follow the instructions in the Install wizard to complete the installa
tion.

Setup creates a new program group called PX.
 21

Imagenation

t
ssi-

ro-

ms

e to

uff-

ble
r

px510.bk : INSTALL.FM Page 22 Friday, September 12, 1997 9:38 AM
When you have competed installing the software, you must reboo
Windows 95 before the drivers that you have installed will be acce
ble.

6 Click the Start button and click Shut Down.

7 In the Shut Down Windows dialog, click Restart the computer and
click Yes to restart Windows 95.

After restarting Windows, you can run one of the PXGDI sample p
grams to verify that your frame grabber is correctly installed. The
sample programs are in the c:\px5\bin directory. If you have proble
running the sample programs, see Troubleshooting, on page 26.

SYSTEM.INI Changes for Windows 95

Frame buffer storage for 16-bit programs is allocated by adding a lin
the [386Enh] section of the SYSTEM.INI file:

[386Enh]
px500_size=256

The memory allocation variable, px500_size, is set to the amount of
physical memory, in 4 KB blocks, the VxD should reserve for frame b
ers.

Frame buffer storage for 32-bit programs is allocated by using the
Windows 95 Registry, as described in the following section.

Windows 95 Registry Changes

If you need to uninstall the PX driver, you must edit the Windows 95
Registry by using the REGEDIT.EXE program in your Windows 95
directory. If you need to change the amount of memory that is availa
for 32-bit PX programs, you can either edit the Windows 95 registry o
rerun the installation program.
22

Chapter 2 Installing Your Frame Grabber

s-

ple,
or is

-
his
 edit

or
ate

r

un.

px510.bk : INSTALL.FM Page 23 Friday, September 12, 1997 9:38 AM
The installation program adds the following key to the Windows Regi
try:

HKEY_LOCAL_MACHINE\System\Services\VxD\PX5_95

The values assigned to this key are:

StaticVxD. A string key that contains the complete path of the VxD
file, such as c:\px5\bin\px5_95.vxd.

memory_size. A 32-bit value that specifies the number of bytes of
contiguous physical storage to reserve for frame buffers. For exam
0x00200000 reserves 2 MB of storage. If this value is not present
zero, no memory is allocated for 32-bit frames, and the
WPX5_95.DLL will refuse to load.

Caution
If you allocate more memory for frame buffer storage than Win
dows 95 can spare, Windows 95 may hang on initialization. If t
happens, you must reboot Windows 95 in safe mode, and then
the Windows 95 Registry or rerun the installation program. You
should leave at least 4 MB of RAM available to Windows 95. F
example, if you have a system with 16 MB of RAM, don’t alloc
more than 12 MB to frame buffers.

Windows NT Software Installation

1 Put the Windows NT installation disk in the floppy drive.

2 Follow the appropriate instructions for Windows NT version 3.51 o
version 4.0:

Version 3.51

a From the Program Manager, choose the File menu and select R
 23

Imagenation

U
r

rt

e

px510.bk : INSTALL.FM Page 24 Friday, September 12, 1997 9:38 AM
b In the Command Line box, type a:\setup , and click OK.

c When the Setup program has completed, restart Windows NT.

Version 4.0

a Click the Start button and click Run.

b For the name of the program, type a:\setup and click OK.

c When the Setup program has completed, restart Windows NT.

Setup creates a new program group called PX.

The installation program places a driver file, PX500.SYS, in your Win-
dows NT system32\drivers directory. All other files are placed in the
directory that you specify during the installation.

When the software installation is complete, you can use the PCIV
program to verify that your frame grabber is correctly installed. Fo
instructions on running PCIVU, see Chapter 3, The PCIVU Applica-
tion, on page 31. If an error message appears when you try to sta
PCIVU, see Troubleshooting, on page 26.

Windows NT Registry Changes

If you need to uninstall the PX500.SYS driver, you must edit the
Windows NT Registry by using the Registry Editor (REGEDIT.EXE)
program in your Windows NT directory. If you need to change the
amount of memory that is available for frames, you can either edit th
Windows NT registry or rerun the installation program.
24

Chapter 2 Installing Your Frame Grabber

s-

r
gis-
ec-
o

nt

ble
e

 one
ore
at
le to
,

last-
is-

px510.bk : INSTALL.FM Page 25 Friday, September 12, 1997 9:38 AM
The installation program adds the following key to the Windows Regi
try:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\PX500

This key should not be modified, but if you need to uninstall the drive
you must remove it. To disable the driver without having to edit the re
try, remove PX500.SYS from your Windows NT system32\drivers dir
tory; the next time you boot Windows NT, NT will report that it failed t
load a driver on initialization.

The installation program also modifies another key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
Session Manager\Memory Manageme

The value NonPagedPoolSize specifies how much memory is available
to NT for various kernel-level processes (including the PX500.SYS
driver) that require non-paged memory. In order for the driver to be a
to allocate image buffers, the size of this pool must be increased. Th
minimum size for NonPagedPoolSize to enable the driver to allocate
640x480 buffer is about 2 MB (0x00200000 bytes). You can reserve m
memory for frame buffers based on the size and number of buffers th
you need to allocate; however, you should leave at least 8 MB availab
Windows NT. For example, if you have a system with 32 MB of RAM
don’t increase NonPagedPoolSize to more than 24 MB.

Caution
If you allocate more memory for frame buffer storage than
Windows NT can spare, Windows NT will crash when it tries to
boot. If this happens, you must reboot Windows NT using the
known good configuration, and then edit the Windows NT Reg
try or rerun the installation program.
 25

Imagenation

-

ng,

ber,
in-
and

e.

px510.bk : INSTALL.FM Page 26 Friday, September 12, 1997 9:38 AM
PX Software Directories

The installation programs create the LIB, INCLUDE, and BIN directo
ries, and directories for the appropriate operating systems:

These directories are structured to make program execution, compili
and linking convenient.

You can run the Windows sample programs to control the frame grab
write BMP files, and run the timing tests (don’t forget to first restart W
dows to load the VxD). The sample programs are PXGDI1, PXGDI2,
PXGDI3.

Troubleshooting

This section contains troubleshooting information for the following:

• Error loading DLLs
• Error loading VxDs
• Running PCIVU or PXREV
• Slow video display performance
• Windows hangs or crashes on reboot

Directory Contents

c:\px5\lib Libraries

c:\px5\include Header files

c:\px5\bin Executable programs, drivers, and DLLs

c:\px5\dos DOS and Watcom DOS/4GW sample source cod

c:\px5\win31 Windows 3.1 source code.

c:\px5\win95 Windows 95 source code.

c:\px5\winnt Windows NT sample source code.
26

Chapter 2 Installing Your Frame Grabber

nt

i-

me
 to
sion
ac-

s in
U

t or
os-
ct

our
).

px510.bk : INSTALL.FM Page 27 Friday, September 12, 1997 9:38 AM
Error Loading DLL

The system can’t locate the PX DLL. Either edit your PATH environme
variable to include the path to the PX DLL (see PX Software Directories,
on page 26) or move the DLL to the \WINDOWS\SYSTEM directory.

Error Loading VxD

When booting Windows 3.1, you might see the error “PX500.VXD
Requires a PCI compatible BIOS.” This means your BIOS lacks the
BIOS32 Service Directory feature of the PCI BIOS Specification, Rev
sion 2.0.

First, make sure you are using the version of the PX500.VXD that ca
with your PX510 or PX610. If you’re using an older version, upgrade
the latest version. If you still get this error message with the latest ver
of PX500.VXD, you’ll need to upgrade your BIOS; contact the manuf
turer of your system for an upgrade.

Problems Running PCIVU or PXREV

PCIVU and PXREV are DOS programs. You can’t run these program
a DOS window in Windows. If your system hangs when you run PCIV
or PXREV, this is the most likely cause.

If the program hangs when you start it, you might have an IRQ conflic
a compatibility problem with the PCI chip set in your PC. Check for p
sible IRQ conflicts first. For the latest compatibility information, conta
Imagenation Technical Support (see Technical Support, on page 29).

Make sure that you are excluding a 4 KB block of upper memory in y
CONFIG.SYS file (see Step 1 on page 16 of the installation instructions

If you see the message This graphics card is not VESA compatible when
you run PCIVU, you aren’t using a VESA-compatible display driver.
 27

Imagenation

the
sed
ab-
.

d

on
dd-

ry

 fol-

he
fer

px510.bk : INSTALL.FM Page 28 Friday, September 12, 1997 9:38 AM
Check the documentation for your display controller board to see if a
VESA-compatible driver is available.

If you see only a few lines of video at the top of the picture in PCIVU,
PCI bus is being overloaded or errors are occurring. Most Intel 486-ba
systems don’t have a PCI bus that is fast enough for the PX frame gr
bers. Run the VGACOPY program to check for errors on the PCI bus

If you haven’t set the IMAGENATION environment variable, PCIVU
will display an error and won’t run. For information on the IMAGENA-
TION environment variable, see AUTOEXEC.BAT Changes for DOS an
Windows 3.1, on page 19.

Slow Video Display Performance

When you’re displaying video on the screen, the amount of memory
the VGA display controller card affects the performance. Generally, a
ing memory to your display controller will improve the performance.

Windows Hangs or Crashes on Boot

This can be caused by an interrupt conflict or by trying to allocate too
much memory for frame buffers. Try decreasing the amount of memo
you’re allocating for frame buffers. You can change this allocation as
lows:

Windows 3.1—Edit the SYSTEM.INI file and change the value for
px500_size to the amount of physical memory, in 4 KB blocks, the
VxD should reserve for frame buffers. Then, restart Windows.

Windows 95—Restart Windows 95 in safe mode. Then, either run t
Setup program again, specifying a smaller value for the frame buf
allocation, or edit the registry to change the memory_size value (see
Windows 95 Registry Changes, on page 22).
28

Chapter 2 Installing Your Frame Grabber

od
.
n

ame

n’t

use.

rd

elp

nfor-

ing
-
S

.1,

r

px510.bk : INSTALL.FM Page 29 Friday, September 12, 1997 9:38 AM
Windows NT—When Window NT reboots, you’ll see the message
“Press spacebar NOW to invoke Hardware Profile/Last Known Go
menu.” Press the spacebar and pick the most recent configuration
This should back out the change to the Windows NT Registry. The
run the Setup program again and specify a smaller value for the fr
buffer allocation.

If decreasing the amount of memory allocated for frame buffers does
help, check to make sure you have an IRQ available and that no ISA
device is trying to use the same IRQ that any PCI device is trying to

Technical Support

Imagenation offers free technical support to customers. If the PX boa
appears to be malfunctioning, or you’re having problems getting the
library functions to work, please read the appropriate sections in this
manual. If you still have questions, contact us, and we’ll be happy to h
you.

When you contact us, please make sure that you have the following i
mation available:

• The revision number of your board. You can get this number by us
the PXREV program in DOS or any of the PXGDI programs in Win
dows. You must run the PXREV program from DOS, not from a DO
window in Windows.

• The operating system you’re running: DOS, DOS/4GW, Windows 3
Windows 95 (16-bit or 32-bit), or Windows NT.

• The compiler you’re using, including the name of the manufacture
and the version number (for example, Borland C version 5.0).
 29

Imagenation

a-
ft-

px510.bk : INSTALL.FM Page 30 Friday, September 12, 1997 9:38 AM

The 24-hour BBS and the Imagenation World Wide Web site (www.im
genation.com) always have the latest versions of the Imagenation so
ware. Check anytime for software updates.

Voice: 503-641-7408 Toll free: 800-366-9131

Fax: 503-643-2458 CompuServe: 75211,2640

Internet:
support@Imagenation.com
www.imagenation.com
30

VU
 of
.
les,
rce.

I.
m

,

px510.bk : PCIVIEW.FM Page 31 Friday, September 12, 1997 9:38 AM
The PCIVU
Application 3

This chapter describes the PCIVU application program for DOS. PCI
is a basic frame grabber application that lets you control the features
your PX frame grabber without writing your own application program
You can use PCIVU to capture frames or fields, write frames to disk fi
set the gain and offset, load the input LUT, and change the video sou

Setting Up PCIVU

To run PCIVU, you must have the IMAGENATION environment vari-
able set to point to the directory containing PCIVU.HLP and PCIVU.IN
PCIVU.HLP contains the text of the help screens you can access fro
PCIVU. PCIVU.INI is an optional file that contains initialization values
for the application.

If you let the DOS Install or Windows Setup programs copy the files
from the diskette and make the required changes to your system files
you’re ready to run PCIVU. If not, see AUTOEXEC.BAT Changes for
DOS and Windows 3.1, on page 19, for the required settings.

3

 31

Imagenation

ore

has

ific
b-

arily
. To

px510.bk : PCIVIEW.FM Page 32 Friday, September 12, 1997 9:38 AM
Starting PCIVU

Make sure you have a video source connected to your PX board bef
starting the PCIVU program.

To run PCIVU, execute the following at the DOS command line (do not
run PCIVU in a DOS window in Windows 3.1):

c:\px5\bin\pcivu

If you see a display like that shown on page 33, the PCIVU program
started correctly. Otherwise, see Troubleshooting, on page 26.

Running PCIVU with More Than One Frame Grabber

If you have more than one frame grabber installed in your system,
PCIVU will use the first frame grabber that it finds. To specify a speec
frame grabber, follow the command with the number of the frame gra
ber:

c:\px5\bin\pcivu n

Frame grabbers are numbered sequentially starting with n = 0. Due to the
nature of the PCI bus, the number of the frame grabber won’t necess
correspond to the PCI bus slot in which the frame grabber is installed
determine the correct number, n, of each frame grabber, you’ll just have
to try the PCIVU application with different values for n and observe the
video displayed to identify the source.
32

Chapter 3 The PCIVU Application

w:

-
nd

.

px510.bk : PCIVIEW.FM Page 33 Friday, September 12, 1997 9:38 AM
Using PCIVU

The screen for the PCIVU application looks similar to the picture belo

If you have an active video source when you start PCIVU, the video
should appear in the Video Window as soon as you start the program.

The Status Line below the video window shows you the current selec
tions for the image displayed in the Video Window, the type of grab, a
the starting field.

Definitions for functions keys are shown in the lower left corner:

• F1 HELP. Press F1 to get help on the currently-selected menu item

• F2 GRAB. Press F2 to grab a frame using the current grab mode.

Grab type: Frame Starting field: Field 0Image status: Acquiring video

Quit demo program and return to DOS

Quit Program Q
Set Grab Type.......................S
Write FileW
Read File R

Initialize Frame Grabber I
Set Offset and Gain..............O
Set Input LUT L
Select Camera......................C

Main Function MenuF1 HELP

F2 GRAB

F3 ACQUIRE

Video Window

F4 CACHE GRAB

F5 CACHE DUMP
 33

Imagenation

.

che.

.
t
t to
ted

px510.bk : PCIVIEW.FM Page 34 Friday, September 12, 1997 9:38 AM
• F3 ACQUIRE. Press F3 to turn continuous acquire mode on or off

• F4 CACHE GRAB. Press F4 to capture a frame to the cache.

• F5 CACHE DUMP. Press F5 to dump the contents of the cache to
system memory.

The keys F4 and F5 appear only if your PX board has the optional ca

The Main Function Menu gives you more detailed control of the board
A short explanation of the currently-highlighted menu item is shown a
the bottom of the screen. For help on a menu item, move the highligh
the item using the arrow keys, and press F1 for Help. The features lis
in the menu are also explained in more detail in Chapter 4, Programming
PX Frame Grabbers, on page 35.
34

P
rogram

m
ing P

X

F
ram

e G
rabbers

e.

he

px510.bk : Program.fm Page 35 Friday, September 12, 1997 9:38 AM
Programming PX
Frame Grabbers 4

This chapter describes key features of the PX hardware and softwar
You’ll find this information useful for using the board with the PCIVU
application, and essential for developing your own PX applications. T
features described include:

• General library characteristics
• Operating system and language specifics
• Initializing and exiting the library
• Allocating and freeing frame grabbers
• Grabbing images
• Setting video gain and offset
• Selecting camera inputs
• Digital input/output
• Using the input lookup table (LUT)
• Getting information on incoming video
• Reading frame grabber information
• Timing the execution of functions
• Using flags with function calls
• Specifying image capture resolution
• Frame and file input/output
• Using the Video Display DLL
• Developing a menu-based user interface for DOS applications
• Frame grabbing and PCI bus performance

4

 35

Imagenation

s:

d

Only
ore

d
ng

n as
ecute
nc-

in-
per-

edi-

px510.bk : Program.fm Page 36 Friday, September 12, 1997 9:38 AM
General Library Characteristics

The PX frame grabber library has the following general characteristic

• Functions are interrupt-driven. An interrupt handler must be
installed before a process can use any of the library functions, and
must be uninstalled after the library functions have been called an
before the process is terminated. For more information, see Initializing
and Exiting the Library, on page 44.

• Frame grabbers are controlled through handles. Software commu-
nicates with a frame grabber using a handle to the frame grabber.
one handle to a given frame grabber may exist at one time. For m
information, see Allocating and Freeing Frame Grabbers, on page 46.

• Images are stored in frames. Images are stored in data structures
called frames. (This use of the term “frame” should not be confuse
with the video term “frame”, which refers to a video image consisti
of two fields.) A frame holds an image and some basic information
about it. For more information, see Frames, on page 48.

• Function timing can be controlled. Some functions can be declared
to be queued, immediate, both, or neither. Queued functions retur
soon as the function data has been entered into the queue and ex
concurrently with subsequent non-queued functions. Immediate fu
tions fail if they can’t execute without delay. For more information,
see Timing the Execution of Functions, on page 64.

• Flags control common features. The behavior of some functions is
specified by a collection of flags, which are ORed together into a s
gle function parameter. These flags control whether the function o
ates on video fields or video frames, which field digitization is to
begin on, and whether or not the function is either queued or imm
ate. For more information, see Using Flags with Function Calls, on
page 70.
36

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

g

es
-

il-

px510.bk : Program.fm Page 37 Friday, September 12, 1997 9:38 AM
Operating System and Language Specifics

Follow the guidelines in this section for compiling, linking, and runnin
PX programs.

You can put c:\px5\lib and c:\px5\include in your environment variabl
for Microsoft, or in your TURBOC.CFG file for Borland, or in your inte
grated development environment (IDE) search list.

Note
All variables declared as int are 16 bits long in DOS and
Windows 3.1 and 32 bits long in DOS/4GW, Windows_95, and
Windows_NT. All pointers in the 16-bit operating systems DOS
and Windows 3.1 must be huge.

DOS Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under DOS:

Header File Library
Runtime, Memory, and
Installation Requirements

PX5.H Borland:
PX5_LB.LIB

Microsoft 7+:
PX5_LM.LIB

Microsoft 6-:
PX5_L6.LIB

For required changes to
AUTOEXEC.BAT, see Changes
to System Files for DOS and
Windows 3.1, on page 19.
 37

Imagenation

il-

il-

-

px510.bk : Program.fm Page 38 Friday, September 12, 1997 9:38 AM
Watcom DOS/4GW Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under Watcom DOS/4GW:

Windows 3.1 Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under Windows 3.1:

Header File Library
Runtime, Memory, and
Installation Requirements

PX5.H PX5_FW.LIB FLATMEM.COM needed for run-
time. For required changes to sys
tem files, see Changes to System
Files for Watcom DOS/4GW, on
page 20.

Header File Library
Runtime, Memory, and
Installation Requirements

WPX5.H WPX5.LIB PX500.VXD and WPX5.DLL
needed for runtime. For memory
requirements and VxD installa-
tion, see DOS, DOS/4GW, and
Windows 3.1 Software Installa-
tion, on page 16.
38

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

il-

px510.bk : Program.fm Page 39 Friday, September 12, 1997 9:38 AM
Windows 95 Programming

The following tables summarize operating system specifics for comp
ing, linking, and running C programs under Windows 95:

Read the discussion in Programming in a Multithreaded, Multitasking
Environment, on page 41, which applies to both Windows 95 and
Windows NT.

Windows 95 16-bit programs

Header File Library
Runtime, Memory, and
Installation Requirements

WPX5.H WPX5.LIB PX5_95.VXD and WPX5.DLL
needed for runtime. For memory
requirements and VxD installa-
tion, see SYSTEM.INI Changes
for Windows 95, on page 22 and
Windows 95 Registry Changes, on
page 22.

Windows 95 32-bit programs

Header File Library
Runtime, Memory, and
Installation Requirements

WPX5_95.H Borland v5.0*:
WPX5_95B.LIB

All other:
WPX5_95.LIB

PX5_95.VXD and
WPX5_95.DLL needed for run-
time. For memory requirements
and VxD installation, see Win-
dows 95 Registry Changes, on
page 22.

* For Borland, set the 32-bit linker option for Allow Import By Ordinal.
Versions of Borland prior to 5.0 are not supported.
 39

Imagenation

95

S-

il-

ms

px510.bk : Program.fm Page 40 Friday, September 12, 1997 9:38 AM
The Windows 95 VxD, PX5_95.VXD, is compatible with 16-bit programs
written for Windows 3.1 and with 32-bit programs written for
Windows 95.

Note
You must use the Windows 95 VxD (PX5_95.VXD) in Windows
for both 16-bit and 32-bit programs.

Any PX DLLs that your application uses should be in the Windows SY
TEM directory or in your path.

Windows NT Programming

The following table summarizes operating system specifics for comp
ing, linking, and running C programs under Windows NT:

Read the discussion in Programming in a Multithreaded, Multitasking
Environment, on page 41, which applies to both Windows 95 and
Windows NT.

The driver structure for Windows NT differs from that of Windows 3.1
and Windows 95, so you must build separate versions of your progra
for use in each environment.

Header File Library
Runtime, Memory, and
Installation Requirements

WPX5_NT.H Borland v5.0*:
WPX5_NTB.LIB

All other:
WPX5_NT.LIB

PX500.SYS and WPX5_NT.DLL
needed for runtime. For memory
requirements and driver installa-
tion, see Windows NT Registry
Changes, on page 24.

* For Borland, set the 32-bit linker option for Allow Import By Ordinal.
Versions of Borland prior to 5.0 are not supported.
40

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

rd-

;

k-
r
t

 is

ion
 in

px510.bk : Program.fm Page 41 Friday, September 12, 1997 9:38 AM
DLL Interface Differences in Windows NT

While the DLL interface for Windows NT is almost identical to that of
Windows 3.1 and Windows 95, there are a few differences:

AllocateAddress() and FrameAddress() do nothing and return zero
in Windows NT. Windows NT doesn’t allow direct access to the ha
ware in this fashion, for reasons of security and stability.

SetCurrentWindow() does nothing and returns zero in Windows NT
in its place, use the Windows NT-specific function WaitFinished().

Programming in a Multithreaded, Multitasking Envi-
ronment

Windows 95 and Windows NT are multithreaded, preemptive multitas
ing operating systems. In such systems, using empty loops to wait fo
events slows the system dramatically by wasting processing time tha
could be used by other threads. For example, an empty loop like this
might be used in a Windows 3.1 program:

while (!IsFinished(fgh,qh))
;

In Windows 95 or Windows NT, such an empty loop is much less effi-
cient than this alternate version:

while (!IsFinished(fgh,qh))
WaitVB(fgh);

In the Windows NT environment, you can replace the while loop above
with the function WaitFinished(qh). WaitFinished(qh) is equivalent and
somewhat more efficient.

The WaitVB() and WaitFinished() functions use system synchronizat
objects to prevent the current thread from executing while the wait is
 41

Imagenation

l
g
l,

 or

y

e
er
mis-

c-
ame
spon-
e
ting
o be

rm
ce
e

asic

px510.bk : Program.fm Page 42 Friday, September 12, 1997 9:38 AM
progress. Since all queued operations finish executing during vertica
blank, polling only once per vertical blank is just as accurate as pollin
more often, but significantly improves system performance. In genera
polling loops should be written to use the Windows message system
have delays like the one above added where appropriate.

Scheduling multiple threads to handle complicated image processing
tasks might make programming significantly easier, and the PX librar
does allow multithreading with one important exception. A program
should not allow two different threads of execution to access the sam
frame grabber at the same time. Doing so could put the frame grabb
into an unpredictable state, and possibly cause DMA transfers to be
directed. This limitation can’t be fixed by simply wrapping each frame
grabber control function in a mutual exclusion object, since many fun
tions such as SetImageSize() permanently change the state of the fr
grabber. In general, you should make sure that only one thread is re
sible for each frame grabber. Functions that do not directly access th
frame grabber, such as the file I/O functions and the buffer manipula
functions, are safe to multithread as long as the usual care is taken t
sure that the data they access does not become invalid.

Visual Basic Programming

The Windows DLLs were designed to make the function calls as unifo
as possible, whether you’re programming in C or in Visual Basic. Sin
the syntax and keywords in Visual Basic differ from those of C, befor
you start programming in Visual Basic, you should look at the Visual
Basic function definitions in the .BAS file.

There are a few things you should keep in mind when using Visual B
with the DLL functions:

Accessing frame data. In C, you can use the pointer returned by
FrameBuffer() to access the image data in the frame. Visual Basic
doesn’t use pointers, so you must use the functions GetColumn(),
42

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

ou
are

ts
e

g by

al-
, use

ith
sic

ack
ray,

px510.bk : Program.fm Page 43 Friday, September 12, 1997 9:38 AM
GetRectangle(), and GetRow() to access the data in a frame. The
FrameBuffer() function exists in Visual Basic for situations where y
need to get a pointer to pass to other Windows API functions that
designed to work with pointers.

.BAS Files. You must include the appropriate .BAS file in all projec
you build using the PX DLL functions. The .BAS files include all th
declarations you’ll need to work with the DLLs. Use WPX5VB.BAS
for all Windows 3.1 programs and for 16-bit programs under
Windows 95. Use WPX_95.BAS for 32-bit Windows 95 programs
and WPX_NT.BAS for Windows NT programs.

Buffers: Strings vs. Integers in Visual Basic 3.0

A Visual Basic 3.0 application can pass buffers to functions as a strin
value (ByVal buf As String) or as an integer array by reference
(buf As Integer). If you pass a buffer as a string, it’s easy to put v
ues into the buffer or take them out. To insert an element into a string
the Chr$() function on that element, and insert the result in the string w
the Mid$() function. The disadvantage to this method is that Visual Ba
string manipulation is fairly slow.

If you pass a buffer as the first element of an integer array, you must p
two pixel values into each integer as you insert the values into the ar
and unpack them when you remove elements from the array. This is
faster, but somewhat more complicated.

The interfaces of the following functions have been defined in
WPX5VB.BAS using strings.

GetColumn() PutColumn()

GetRectangle() PutRectangle()

GetRow() PutRow()
 43

Imagenation

S

-

i-

px510.bk : Program.fm Page 44 Friday, September 12, 1997 9:38 AM
If you want to change the interface, you should edit the WPX5VB.BA
file and replace occurrences of ByVal buf As String with buf
As Integer .

Buffers in Visual Basic 4.0

Visual Basic 4.0 includes a Byte type, which is equivalent to the
unsigned char type that the DLLs expect for buffers. Thus, the
WPX5_95.BAS and WPX5_NT.BAS files use buf As Byte in the
function definitions. To pass a buffer to the DLL, just pass the first ele
ment of your declared Byte array.

Using the Visual Basic Development Environment

Caution
Do not use the End button in the Visual Basic development env
ronment to terminate your application. The End button termi-
nates a program immediately, without executing the
Form_Unload function or any other functions. If you use the End
button to exit a program, you must use the PXCLEAR utility to
free any frame grabbers that your program allocated.

Displaying Video in Visual Basic Applications

The PX software includes a Video Display DLL that makes displaying
captured images in a window quite simple. For more information, see
Using the Video Display DLL, on page 76.

Initializing and Exiting the Library

Before calling any other library functions, you must explicitly initialize
the library by calling InitLibrary() . Following your last call to the
library, before your program terminates, you must call ExitLibrary() .
44

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

s
 and
 or

-
s,

as
-

You
l-

h
and
,

y

px510.bk : Program.fm Page 45 Friday, September 12, 1997 9:38 AM
In the DOS and DOS/4GW versions of the library, InitLibrary() install
an interrupt handler that is needed for frame grabber communication,
ExitLibrary() uninstalls the interrupt handler. If your program crashes
terminates without calling ExitLibrary(), you will probably need to
reboot your system, as it may be in an unstable state.

In the Windows versions of the libraries, the interrupt handlers are
installed by the low-level device drivers; the virtual device drivers
(VxDs) in Windows 3.1 and Windows 95, and the kernel driver in Win
dows NT. The low-level device driver is loaded when you start Window
and is uninstalled when you exit Windows.

Check the return value from InitLibrary() to make sure the function w
successful (non-zero = success). InitLibrary() can fail under the follow
ing conditions:

• The PCI BIOS does not exist or is malfunctioning. Your computer
probably has a hardware problem.

• The PCI BIOS was unable to assign an IRQ to the frame grabber.
may need to modify your CMOS settings to make more IRQs avai
able to the PCI BIOS.

• There is no suitable memory block in upper memory. In DOS, eac
frame grabber requires a contiguous 4KB block of upper memory,
InitLibrary() will try to find such a block. For more information, see
DOS, DOS/4GW, and Windows 3.1 Software Installation, Step 1 on
page 16.

• There is insufficient conventional memory. InitLibrary() allocates a
small amount of storage for internal data structures.

• There are no Imagenation frame grabbers in your computer, or the
are malfunctioning.
 45

Imagenation

ith it.
b-

h
er
eep

so a
n as
us
es

 to
I

 dif-

en

ess
ct-

 to

px510.bk : Program.fm Page 46 Friday, September 12, 1997 9:38 AM
Some of these error conditions can be detected by calling the
CheckError() function (see CheckError, on page 83).

Allocating and Freeing Frame Grabbers

A process must have a handle to a frame grabber to communicate w
The AllocateFG() function returns a handle to the specified frame gra
ber if it exists and hasn’t already been allocated to another process.

FreeFG() frees the specified frame grabber, so it can be allocated by
other processes.

Any process with a valid frame grabber handle can communicate wit
that frame grabber. One process can get a handle to the frame grabb
using AllocateFG(), and other processes can use the same handle. K
in mind that any process can change the state of the frame grabber,
given process can’t assume the state of the frame grabber will remai
that process last left it. When more than one process has simultaneo
access to the same frame grabber, you must coordinate the process
accordingly.

If you’re using multiple frame grabbers in a single system, you’ll need
determine which frame grabber is which. Due to the design of the PC
bus, bus slot 0 doesn’t necessarily correspond to frame grabber 0, and the
number of the frame grabber in a particular bus slot can vary between
ferent operating systems. You can determine which frame grabber is
which by connecting a video source to only one frame grabber and th
using the PCIVU program (or your own program) to switch between
frame grabbers.

When the AllocateFG() function fails, it is often because another proc
is using the frame grabber, or because a program terminated unexpe
edly, leaving a frame grabber allocated. In Windows 3.1 and
Windows 95, you can use the PXCLEAR program (described below)
46

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

 to

and
ated
.
ves
l
hem.

b-
 You

e

y

nt
 the

px510.bk : Program.fm Page 47 Friday, September 12, 1997 9:38 AM
free all frame grabbers. For other operating systems, you might need
reboot your system.

The PXCLEAR Utility

PXCLEAR is a utility that frees frame grabbers. It is available for both
Windows 3.1 and Windows 95. If a program terminates unexpectedly
does not call its exit procedures, any frame grabbers that it had alloc
will still be allocated, preventing any other programs from using them
PXCLEAR tells you which frame grabbers are currently in use, and gi
you the option of freeing all of them. It can’t be used to free individua
frame grabbers; it frees all frame grabbers in the system or none of t

You should not use PXCLEAR as a general tool for freeing frame gra
bers in preference to freeing them in your program's exit procedures.
also should not use PXCLEAR while any program that is using a fram
grabber is still running.

Note
The Visual Basic development environment End button terminates
a running program immediately, without executing the
Form_Unload function (or any other). If you use the End button
to exit a program, you must use the PXCLEAR utility to free an
frame grabbers that your program allocated.

Grabbing Images

The library functions for grabbing images let you specify how you wa
to initiate the capture and where you want the frame grabber to send
captured image data.
 47

Imagenation

rm
g
out

a-
 via

ff-
g
’re
ou
ca-

r()

px510.bk : Program.fm Page 48 Friday, September 12, 1997 9:38 AM
Frames

Library functions can send the grabbed image data to frames or to the
onboard video cache RAM, if it exists. Don’t confuse this use of the te
frame with the term video frame, which refers to a video image consistin
of two fields. A frame stores an image and some basic information ab
it, including the image height, width, and number of bits per pixel.

Allocating and Freeing Frames

You can create a frame in two ways: with AllocateBuffer() or with
AllocateAddress(). AllocateBuffer() allocates storage for a frame in
main memory and calculates the physical address for the storage loc
tion, so the frame grabber can send image data directly to the buffer
DMA. AllocateAddress() is discussed in Sending Images Directly to
Another PCI Device, below.

When the AllocateBuffer() function fails, it means that you don’t have
enough memory allocated for frame buffers. Try freeing any frame bu
ers that you don’t need. If calls to AllocateBuffer() still fail, try rebootin
your system. You might need to increase the amount of memory you
allocating for frame buffers. This memory allocation is set at the time y
install the PX software. For information on changing the memory allo
tion, see the appropriate section for your operating system in Chapter 2,
Installing Your Frame Grabber, on page 13.

When you want to free memory previously allocated by AllocateBuffe
or AllocateAddress(), use the FreeFrame() function. Do not try to free a
buffer when data is being transferred to it by queued functions or by
GrabContinuous().

Functions for Grabbing to Frames

The library includes three functions for grabbing images to frames:
Grab(), GrabTriggered(), and GrabContinuous().
48

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

e

o

rame

. For

ata is

upt.

) is

px510.bk : Program.fm Page 49 Friday, September 12, 1997 9:38 AM
Grab() and GrabTriggered() both digitize video and copy the data to th
specified frame. For both functions, you can specify which video field
they should start on, whether to digitize one field or both, and when t
execute (see Timing the Execution of Functions, on page 64). By using
the CACHE flag, you can make Grab() and GrabTriggered() copy the
data to the cache at the same time the data is copied to the specified
frame.

Grab() starts digitizing as soon as the command is processed by the f
grabber, while GrabTriggered() does not start digitizing until the first
trigger pulse received after the command is sent to the frame grabber
more information on using the trigger, see Trigger, on page 58.

GrabContinuous() continuously digitizes and transfers video to the
specified frame. By using the CACHE flag, you can make
GrabContinuous() copy the data to the cache at the same time the d
copied to the specified frame.

If the PCI bus is overloaded, it’s possible for captured data to be corr
Although the Grab functions can’t determine when data is being cor-
rupted, CheckError() will return the value ERR_CORRUPT.

When you want to access the data for image processing, use
FrameBuffer() to get a logical address (a pointer) to the data.

The most common reasons the grab functions fail are:

• The frame grabber handle or the frame buffer handle is invalid.

• The image specified by SetImageSize() (or the default image size
too large in width or height for the frame buffer.

• For triggered grabs, an incorrect trigger type is specified or the
GrabTriggered() function is called with the DEBOUNCE flag, but
without specifying a trigger type.
 49

Imagenation

urce
a is

ht

ch-

er-

ems
un

dress
t

at
 of
ptur-
s

ard,
eo
ress
tact

)

px510.bk : Program.fm Page 50 Friday, September 12, 1997 9:38 AM
If the captured image is all black, be sure to check that your video so
is attached to the frame grabber and that the iris on the video camer
open.

If you’re using a system with an Intel Pentium Pro processor, you mig
not be able to read valid data from a frame buffer in system memory
immediately after grabbing the image. This is due to the processor ca
ing the data, rather than writing the data immediately to memory. Try
inserting a delay in your program before reading the data.

If you get only a few lines of valid video at the top of an image you’ve
grabbed to a frame buffer in system memory, the PCI bus is being ov
loaded or errors are occurring on the bus. Most Intel 486-based syst
don’t have a PCI bus that is fast enough for the PX frame grabbers. R
the VGACOPY program to check for errors on the PCI bus.

Sending Images Directly to Another PCI Device

Some devices, such as high-end PCI video cards, have a physical ad
where they can receive data via direct memory access (DMA). (Don’
confuse this physical address with the logical addresses or pointers that
software normally uses. A physical address is a low-level construct th
the hardware uses in its internal communication, and is independent
the operating system.) This provides a high-performance path for ca
ing images directly to the device. For example, some PCI video card
have a flat addressing mode that allows DMA transfers to the card with-
out having to swap pages of video memory in and out. With such a c
you should be able to display video in real time. To find out if your vid
card supports flat addressing, and how to determine the physical add
for the card, refer to the documentation that came with the card or con
the manufacturer.

Use AllocateAddress() to create a frame for a specified physical address,
where the frame grabber will copy the image data. AllocateAddress(
50

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

 be

T
e

o
no
 the
w
in-

 the
ture.

se

 can
d
the
ges
os-

px510.bk : Program.fm Page 51 Friday, September 12, 1997 9:38 AM
does not allocate any storage for an image buffer, since the data will
sent directly to the physical address.

Note
AllocateAddress() returns zero and has no effect in Windows N
programs; Windows NT doesn’t allow applications access to th
hardware in this fashion for reasons of security and stability.

Use the Grab(), GrabTriggered(), and GrabContinuous() functions to
capture images to frames allocated with AllocateAddress().

Caution
Use transfers to PCI devices only if you are familiar with DMA
data transfers. DMA transfers bypass the operating system, s
there is no opportunity to check for an incorrect address, and
protection faults are issued. An incorrect address could cause
operating system to crash. Since you are bypassing the windo
management routines of Windows, you can also corrupt the w
dows of other programs.

AllocateAddress() doesn’t allocate any storage for an image buffer, so
FreeFrame() function frees only the memory used by the frame struc
Also, frames you create with AllocateAddress() can’t be read by the
library, so you can’t use FrameBuffer() to get a logical address to tho
frames.

Sending Images to the Onboard Video Cache RAM

In systems with two or more PCI devices, it’s possible to overload the
PCI bus, resulting in lost or corrupted data. For these situations, you
purchase PX frame grabbers with either 512 or 1,024 lines of onboar
video cache RAM. Grabbing images to the video cache doesn’t use
PCI bus. For example, using the video cache, you could capture ima
simultaneously with two or more frame grabbers and be sure of not l
ing any data.
 51

Imagenation

re
s

ata is

re

b-
als

indi-
’t
b-
r

gth.

des,

ro-

ni-

px510.bk : Program.fm Page 52 Friday, September 12, 1997 9:38 AM
When grabbing to the video cache, you use the GrabToCache() and
CacheTriggered() functions. GrabToCache() and CacheTriggered() a
identical to Grab() and GrabTriggered(), except that the image data i
transferred to the optional onboard video cache RAM instead of to a
frame in main memory (see Video Cache RAM, on page 63). By using the
CACHE flag, you can also make Grab(), GrabTriggered(), and
GrabContinuous() copy the data to the cache at the same time the d
copied to the specified frame.

You can’t directly access the image data in the video cache. Use the
ReadCache() function to transfer the information from the cache to a
specified frame to examine and process the data.

The HaveCache() function returns the number of lines of cache that a
installed on the board.

Grabbing Images with Non-Standard Video Formats

With the standard video formats NTSC and CCIR/PAL, the frame gra
ber can automatically synchronize to vertical and horizontal sync sign
in the incoming video and capture the correct number of lines in the
vidual fields or frames of interlaced video. For cases where you aren
working with the standard sync signals or field lengths, PX frame gra
bers include versatile capabilities for synchronizing the frame grabbe
with the video source and for adjusting to variations in video field len

PX510 and PX610 frame grabbers support these synchronization mo
which you can set using the SetVideoFormat() function:

Automatic. The frame grabber automatically detects and synchro-
nizes to the NTSC and CCIR/PAL video formats. Automatic synch
nization is the default mode and is the simplest way to capture
standard NTSC and CCIR/PAL video signals. (Automatic synchro
zation is the only mode the PX500 frame grabber supports.)
52

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

a-
 to
ber’s

e
b-

ble
hen

sync
rder
ct
b-

).

l
-
 of
dd
ical

m-
ths.

addi-

o
 a

an

px510.bk : Program.fm Page 53 Friday, September 12, 1997 9:38 AM
Internal. The frame grabber generates its own internal synchroniz
tion information. Internal synchronization is useful when you want
synchronize the camera to the frame grabber using the frame grab
synchronization drive signals (see Synchronization Drive Signals, on
page 60).

WEN. The frame grabber gets horizontal sync information from th
incoming video signal, but vertical sync occurs when the frame gra
ber detects a window enable (WEN) pulse on the trigger line. WEN
synchronization is intended for use with a particular type of resetta
camera. Most resettable cameras generate a vertical sync pulse w
they are reset; other resettable cameras don’t generate a vertical
signal, but instead generate a WEN signal on a separate line. In o
to use the frame grabber with this type of camera, you must conne
the WEN output of the camera to the trigger input of the frame gra
ber. When you select WEN synchronization, you must specify the
length, in horizontal periods, of the video field and of the vertical
blank (see the owner’s manual for your camera for this information

User. User synchronization works like Automatic synchronization,
with the frame grabber synchronizing to the vertical and horizonta
synchronization signals of the incoming video signal, but User syn
chronization mode lets you specify the length of the video field and
the vertical blank. User synchronization automatically adjusts for o
fields having a vertical blank that is one period longer than the vert
blank for even fields, which is standard for NTSC and CCIR/PAL
video. User synchronization is useful for capturing images from ca
eras that output standard sync signals but non-standard field leng

In addition to the three modes listed above, the PX610 supports one
tional synchronization mode:

Single-Field. Single-Field synchronization assumes that every vide
frame consists of a single field, rather than two fields separated by
vertical blank. Single-Field synchronization is useful for capturing
from non-interlaced video sources, typical of many progressive-sc
 53

Imagenation

 non-

er-

a-
l
s for
ced
val-

ted

r
rs,

px510.bk : Program.fm Page 54 Friday, September 12, 1997 9:38 AM
cameras. For example, a progressive-scan camera might output a
interlaced form of NTSC video with 486 lines of valid video and 39
lines of vertical blank for every frame. You can specify Single-Field
sync in combination with User, WEN, or Internal to handle non-int
laced video sources using different synchronization methods. You
may not use Single-Field sync alone.

The SetVideoFormat() function lets you specify any of the synchroniz
tion modes, the length of the video field, and the length of the vertica
blank period. Standard values for interlaced signals and typical value
non-interlaced signals are given in the following table. For non-interla
cameras, refer to the manual that came with your camera for actual
ues.

For the Automatic mode, the field length and vertical blank length
parameters are ignored.

Accessing Frame Data

You can access image data stored in a frame in main memory alloca
by AllocateBuffer() in two ways:

• Use the FrameBuffer() function to get a logical address (a pointer) to
the data and use the pointer to operate directly on the data.

• Use the GetRectangle(), PutRectangle(), GetRow(), PutRow(),
GetColumn(), and PutColumn() functions to access the frame buffe
data. For languages, such as Visual Basic, that do not have pointe

Video Format Field Length Vertical Blank

NTSC interlaced 243 19

CCIR/PAL interlaced 288 24

NTSC non-interlaced 486 39

CCIR/PAL non-interlaced 576 49
54

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

fer.

lare

e

 pro-

si-

e

eo

e

px510.bk : Program.fm Page 55 Friday, September 12, 1997 9:38 AM
these functions are the only way to access the data in a frame buf
These functions will fail if the buffer you are copying to isn’t large
enough to hold the data. For buffers >64 KB in size, be sure to dec
the type of the buffer variable as huge.

You can also get the height, width, and number of bits per pixel of th
frame by calling FrameHeight(), FrameWidth() , and FrameBits().

You can use FrameAddress() to get the physical address for a buffer, but
don’t try to use this physical address to access data in an application
gram; use the logical address returned by FrameBuffer() instead.
FrameAddress() is provided only for special situations in which a phy
cal address might be needed, as in writing device drivers.

Note
FrameAddress() returns zero and has no effect in Windows NT
programs. Windows NT doesn’t allow applications access to th
hardware in this fashion for reasons of security and stability.

Setting Video Offset and Gain

Video Offset

The offset adjusts the D.C. video level up or down in 256 steps, by
approximately 100 percent in either direction. This allows a bright vid
peak to be brought down to digital zero, or a dark video level to be
boosted up to digital 255. The SetOffset() function accepts values rang-
ing from -128 to +127.

GetOffset() returns the current offset value.

At power-up, offset = -8. This offset value tends to compensate for th
video pedestal (the built-in video bias).
 55

Imagenation

y-
-

me
this
s

n
,
tical

e.

,
ange

sing
t-

px510.bk : Program.fm Page 56 Friday, September 12, 1997 9:38 AM
Video Gain

PX frame grabbers sample the incoming video signal and assign gra
scale values from zero to 255 to amplitude values that are within sam
pling range. If the amplitude of the input signal is greater than the
sampling range, all samples above the range will be assigned the sa
grayscale value, essentially attenuating the signal. If you don’t want
to happen, you can decrease the video gain so that all of the signal i
within the sampling range.

If the range of amplitude in the incoming signal is much narrower tha
the sampling range, you’ll be using only a portion of the full grayscale
and amplitude values that are close together will be assigned the iden
grayscale value. You can increase the gain to effectively magnify the
amplitude of the incoming signal so that it uses more of the grayscal

PX frame grabbers let you adjust signal gain by selecting fine grain
adjustments within four gain ranges. The gain ranges are 1/2 to 1, 1 to 2
2 to 4, and 4 to 8. These gain ranges overlap by a few percent. The r
1/2 to 1 allows you to bring down video that is too bright. You set the
gain range using the function SetGainRange() with a value of 0, 1, 2, or
3 to specify the range. The function GetGainRange() returns the cur-
rently selected range.

Within each gain range, the fine gain can be varied in 256 steps by u
the SetFineGain() function with a value from 0 to 255. The fine gain se
ting deviates from linearity by a maximum of 11% in the middle of the
range. The GetFineGain() function returns the current value set by
SetFineGain().

You can calculate the total gain using the following formula:

total gain
256

512 fine gain()–
--- 2

gain range()×=
56

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

r

l

 to it.
ig-

r-

lay
ree
t

ame
fore
o

 a
. If
ype,

px510.bk : Program.fm Page 57 Friday, September 12, 1997 9:38 AM
where fine gain is the value (0-255) of the parameter for the
SetFineGain() function and gain range is the value (0-3) of the paramete
for the SetGainRange() function.

At power-up, the gain range is 1 to 2, and the fine gain is 0, for a tota
gain of 1.

Selecting Camera Inputs

Each frame grabber can have up to four cameras connected directly
The SetCamera() function selects one of the four video inputs to be d
itized. The GetCamera() function returns the currently selected input.

By default, PX frame grabbers automatically detect the video format
(NTSC or CCIR/PAL) on the active camera input. If you need to dete
mine the video type for use in your program, you can use the
VideoType() function.

When you switch from one video input to another, there may be a de
before the frame grabber can synchronize to the new video input. Th
factors determine the time that it takes to synchronize to a video inpu
once you’ve switched to it: input video type, whether the cameras are
gen-locked or not, and brightness levels. If the cameras are all the s
video type, there should be a delay of no more than one field time be
re-synchronization occurs; if they are also gen-locked, there will be n
appreciable delay. (Cameras of different video types can’t be gen-
locked.) If the cameras are not of the same video type, there may be
delay of as much as four field times before re-synchronization occurs
the brightness level differs between two cameras of the same video t
there may be some additional delay when switching.
 57

Imagenation

e

be

e

o

h of

nsi-

ld

lso

r

px510.bk : Program.fm Page 58 Friday, September 12, 1997 9:38 AM
Input/Output

PX frame grabbers include digital I/O features that let you synchroniz
the frame grabber with other devices in the system.

Trigger

PX frame grabbers have an external TTL-level trigger input that can
used to trigger an image capture using the GrabTriggered() or
CacheTriggered() functions, or to trigger a strobe sequence (see Strobes,
on page 59). A simple push button switch attached to this input can b
used like a camera shutter button.

The SetTriggerType() function lets you specify how the frame grabber
should treat the trigger signal:

• Level-sensitive. The trigger input can be programmed to respond t
either a logic high (HIGH) or low (LOW). You should use the level-
sensitive trigger mode whenever the trigger input pulse has a widt
less than one field time (16 ms).

• Edge-sensitive. The trigger can be programmed to respond to a tra
tion from high to low (FALLING) or from low to high (RISING). In
applications where the trigger input pulse lasts longer than one fie
period, use an edge-sensitive trigger.

• Debounce compensation. Mechanical switches used as the trigger
input can bounce (create spurious edges) when opening or closing.
This causes problems in the edge-triggered mode. For example, a
switch to ground will cause a falling edge when it closes, but will a
cause more falling edges when it reopens due to the microscopic
bounce of the switch contacts. In this case, a negative-edge trigge
mode will experience unexpected triggers.
58

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

s
.
e
am-

time

TTL-

ed

i-

obe
se

px510.bk : Program.fm Page 59 Friday, September 12, 1997 9:38 AM
With debounce compensation, after a trigger and the software
acknowledge, new triggers are locked out until the trigger input ha
returned to the untriggered state during at least one vertical blank
This means the edge-triggered mode in combination with debounc
mode can’t be used to grab two consecutive fields. In the switch ex
ple above, the switch would need to be open for at least one field
before closing again.

Strobes

PX frame grabbers have two strobe lines that you can use to output
level pulses. Using the SetStrobeType() function, you can set the strobe
activity to one of these modes:

Off—Strobe lines are disabled (default).

Normal—Outputs TTL-level pulses on the strobe lines when initiat
by the FireStrobe() function.

Triggered—Outputs TTL-level pulses on the strobe lines when init
ated by an incoming trigger signal.

When you select either a normal or triggered TTL-level strobe, the str
lines output a pulse on strobe 0, followed by a gap, followed by a pul
on strobe 1, as shown in the following figure:

Strobe 0

Strobe 1

t1 t2 t3
 59

Imagenation

 the

a
 type
all
e

L-
 the

ro-

y
d to
et

a
el is
y-

px510.bk : Program.fm Page 60 Friday, September 12, 1997 9:38 AM
You control the lengths of the pulses (t1 and t3) and the gap (t2) with
SetStrobePeriods() function. Pulse lengths are set in multiples of the
horizontal scan frequency (63.5 microseconds for NTSC video,
64 microseconds for CCIR/PAL). You control the strobe polarity,
whether a strobe line is high or low when active, by using the
SetStrobePolarity() function. You can control strobe polarity individu-
ally for each strobe line.

When the strobes are in triggered mode, the frame grabber initiates
strobe sequence whenever the board receives a trigger signal of the
specified by SetTriggerType(). To initiate a normal strobe, you must c
the FireStrobe() function and specify one of the strobe commands. Th
strobe commands let you fire part or all of a strobe sequence, abort a
strobe sequence in progress, or stop all strobe activity.

Synchronization Drive Signals

PX frame grabbers have two sync lines that you can use to output TT
level, horizontal and vertical synchronization signals. You can control
polarity of the sync signals using the SetDrivePolarity() function.

You can avoid a possible feedback loop when the frame grabber is p
viding sync signals to the camera that is generating the video input.
Before enabling the sync outputs, use the SetVideoFormat() function to
set the board to internal synchronization mode, so the board doesn’t tr
to synchronize to the incoming video signal. When you want the boar
synchronize to the incoming video signal, use SetVideoFormat() to s
the mode to automatic synchronization.

Using the Input Lookup Table (LUT)

A lookup table, or LUT, is a table that is used to change the value of
pixel based on its current value. The current grayscale value of a pix
used as an index into a LUT, and each entry in the LUT is itself a gra
60

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

min-
e to
e

s as
lues
can

ou

eter-
UT.

he

st

px510.bk : Program.fm Page 61 Friday, September 12, 1997 9:38 AM
scale value. The process of applying a LUT to an image involves exa
ing each pixel to determine its current grayscale value, using this valu
“look up” the new value in the LUT, and assigning the new value to th
pixel.

PX frame grabbers have a 256-entry LUT that is applied to all image
they are captured. On power-up, the LUT is loaded with ascending va
from 0 to 255, so that it leaves any captured image unchanged. You
use the SetLUT() function to change the values in the LUT, and the
GetLUT() function to read the current values.

Reading or writing the LUT takes a noticeable fraction of a second; y
can’t load the entire LUT during vertical blank.

Getting Information about Incoming Video

Application programs can compare the digitized pixel values of the
incoming video to a reference value, read and write the built-in field
counter, and determine the video format.

Checking Pixel Values

You can query the frame grabber to see if any pixels in the last video
frame were equal to, or greater than, a specific value. The value is d
mined after the video is digitized and has passed through the input L
The SetCompare() function lets you set the comparison value, and the
CheckEqual() and CheckGreater() functions return the results of the
comparison.

These functions are useful for automatically checking and adjusting t
video gain. If you find pixel values at the extreme (255), you might be
losing useful information in the video image. You can repeatedly adju
the gain and re-check until all pixel values are within range (<255).
 61

Imagenation

nd

 the
, the
y
f the

rab-

-
with

 hor-
 the

eme
e
 the
rob-
e
ns.

mber

px510.bk : Program.fm Page 62 Friday, September 12, 1997 9:38 AM
Video Format

PX frame grabbers support several video formats, including NTSC a
CCIR/PAL. Both of these formats are typically interlaced, alternately
sending the odd lines of the image as one field and the even lines of
image as another field. In addition to the standard interlaced formats
PX610 supports non-interlaced video signals, like those generated b
many progressive-scan cameras. In non-interlaced format, all lines o
image are sent in order.

On power-up and when switching between video inputs, the frame g
ber automatically detects the video format within approximately four
fields. You can use the VideoType() function to determine if the active
video source is in NTSC format, CCIR/PAL format, or some other for
mat. If the frame grabber detects a field length that is not consistent
either NTSC or CCIR/PAL, VideoType() reports the type as other.

For both interlaced formats, a video image consists of a video frame con-
taining two fields. The period between fields is called vertical blank.

In NTSC video mode, the board begins and ends the sampling of the
izontal video exactly where video should begin and end, according to
NTSC RS-170 video standard. Not all cameras adhere exactly to the
video standards, so don’t be surprised if several columns on the extr
left or right edge of your image contain invalid information. Also, som
cameras generate video artifacts on the extreme left or right edge of
image. In many video applications, these anomalies would not be a p
lem because they would be off the edges of the display. Your softwar
may have to compensate by not performing analysis on these colum
For information on cropping images, see Cropping Images, on page 73.

Counting Fields

You can use the GetFieldCount() function to count the number of fields
the frame grabber has received. The counter normally reports the nu
62

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

but

e an
ven
ync
r

ou
CI

 An

e

n

.

px510.bk : Program.fm Page 63 Friday, September 12, 1997 9:38 AM
of fields that have elapsed since the last reset of the frame grabber,
you can set the counter to start counting from any value by using the
SetFieldCount() function.

If the frame grabber is not connected to a video source, it will produc
internal video sync pulse, so the field count will continue to increase e
in the absence of video input. Since the field counter counts vertical s
pulses on the active input, switching input sources can cause irregula
field counts, depending on the relative phase of the video inputs.

Reading Frame Grabber Information

Video Cache RAM

Video cache RAM is an image buffer located on the frame grabber. Y
can grab an image and store it in the video cache without using the P
bus.

Video cache RAM is available only if you have purchased that option.
application can use the HaveCache() function to determine how many
lines of video cache RAM are available.

Board Revision Number

The frame grabber has a revision number encoded in it, which can b
read using the ReadRevision() function. In most cases you won’t need
this function. If you need your revision number for calling Imagenatio
Technical Support, use one of these easy methods:

DOS or DOS/4GW—Run the PXREV program.

Any version of Windows—Run any of the PXGDI sample programs
The revision number appears in the title bar.
 63

Imagenation

 pro-

inst
sys-

-

d in

px510.bk : Program.fm Page 64 Friday, September 12, 1997 9:38 AM
Hardware Protection Key

You can request to have your frame grabbers encoded with a unique
tection key that your software can read using the ReadProtection() func-
tion. Checking for the key in software gives you some protection aga
software piracy, since you can prevent the software from running on
tems that you have not supplied.

Board Configuration

The ReadConfiguration() function returns flags for features that the
board supports:

• Video cache RAM
• Type of bus design (PCI, PC/104 Plus, Compact PCI)
• Horizontal and vertical image cropping and scaling
• Non-interlaced video sources
• Strobe signal output
• Sync drive signal output
• WEN signal trigger for vertical sync
• Board model (PX500 or PX510/PX610)

Timing the Execution of Functions

The PX software library includes some advanced features for applica
tions that are time-critical. These features let you determine whether
functions should be executed immediately, or if they should be place
a queue to execute asynchronously while the program proceeds.
64

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

s a

for-
 dis-

iving

y

ry
A
e,
ther

lel

es-
-

px510.bk : Program.fm Page 65 Friday, September 12, 1997 9:38 AM
Queued Functions

Frame grabber applications often include a loop that repeatedly grab
frame and then processes the information in it. For example:

for (;;)
{

Grab(fgh, fbuf, 0);
Process_Image(fbuf); /* your function */

}

where fgh identifies the frame grabber, fbuf specifies the frame handle,
and 0 indicates that Grab() is to use the default settings.

This technique of serially grabbing and processing frames is straight
ward and easy to implement using the PX library. However, there are
advantages to this serial process:

• While the image is being processed, the frame grabber can’t grab
images, and much of the video image data that the camera is rece
never gets processed.

• While the frame grab is occurring, the computer’s CPU can’t do an
image processing and sits idle waiting for the next frame.

PX frame grabbers transfer image data to a frame using direct memo
access (DMA), which bypasses the computer’s operating system. DM
makes it possible to have the frame grabber moving data to one fram
while at the same time the application is processing image data in ano
frame. The library has been designed to take advantage of this paral
activity. Certain functions can be designated as queued, by specifying the
QUEUED flag in the function call (see Using Flags with Function Calls,
on page 70). A queued function will return as soon as it puts the nec
sary information in the queue, without waiting for the operation to exe
cute. This frees the application to continue processing.
 65

Imagenation

e
.

e
ate

n

px510.bk : Program.fm Page 66 Friday, September 12, 1997 9:38 AM
Here’s an example of how you might use this capability:

int grab1, grab2;
grab1 = Grab(fgh, fbuf1, QUEUED);
grab2 = Grab(fgh, fbuf2, QUEUED);
while (!IsFinished(fgh, grab1))

WaitVB(fgh); /* wait until grab 1 has completed */
for (;;)
{

ProcessImage(fbuf1);
grab1 = Grab(fgh, fbuf1, QUEUED);
while (!IsFinished(fgh, grab2))

WaitVB(fgh);/* wait until grab 2 has completed */
ProcessImage(fbuf2);
grab2 = Grab(fgh, fbuf2, QUEUED);
while (!IsFinished(fgh, grab1))

WaitVB(fgh);/* wait until grab 1 has completed */
}

The IsFinished() function is used to determine whether a function has
completed. In the example above, once IsFinished() indicates that th
first Grab() is complete, the program starts processing the first image
IsFinished() can check on a specific function in the queue (as in this
example), or check to see if all functions in the queue are complete.

If your system has more than one frame grabber installed, each fram
grabber has a separate queue, and IsFinished() checks the appropri
queue based on the handle fgh that you specify.

Note
There is an important difference in the behavior of the queue i
Windows NT and the behavior of the queue in other operating
systems. For more information, see Queue Structure under
Windows NT, on page 67.
66

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

to

rn-
n

me
.
me-
syn-

nd

are

eue-
e,
OS/
d
il

px510.bk : Program.fm Page 67 Friday, September 12, 1997 9:38 AM
Synchronizing Program Execution to Video

The library has two functions, Wait() and WaitVB(), that can be used
synchronize program execution to incoming video:

WaitVB() pauses until the end of the next vertical blank before retu
ing. This is the most efficient way to synchronize program executio
to video for non-queued functions.

Wait() can wait for the end of the next field, the end of the next fra
(two complete fields), or the end of a specific field before returning
Wait() takes exactly as much time as a Grab() with the same para
ters. Since the Wait() function can be queued, it is most useful for
chronizing queued functions to video.

Purging the Queue

The KillQueue() function purges any pending functions in the queue a
terminates any that are executing. This function is designed for error
recovery and should only be used when the queue appears to have
stopped processing functions.

The results of any functions in the queue when KillQueue() is called
undefined. For example, if a call to Grab() is in the queue when
KillQueue() is called, the image data in the frame might not be valid.

Queue Structure under Windows NT

There is a subtle but important difference in behavior between the qu
ing structure that the DOS, Windows 3.1, and Windows 95 drivers us
and the queueing structure that the Windows NT driver uses. The D
Windows 3.1/Windows 95 queue is fixed in size; if the queue is full an
an application attempts to queue another function, the function will fa
without effect.
 67

Imagenation

s

eues
e
le-
m-

ted.

he

 in
 If

c-

of

 This

ve
in-
d

px510.bk : Program.fm Page 68 Friday, September 12, 1997 9:38 AM
The Windows NT queue, on the other hand, is variable in size, but ha
only a limited number (128) of queue handles available to the PX500
driver. If there are 128 operations in the queue, and an application qu
up another operation, the handle of the 129th queued operation will b
the same as the 1st. This will not affect the proper processing of all e
ments in the queue. However, if you then call WaitFinished() (for exa
ple) with that handle, it will not return until the 129th operation has
completed, rather than returning when the 1st operation has comple
This is not likely to be a problem unless you have a processor that is
capable of queueing up 128 items in less than the time that it takes t
longest queued operation to complete.

Immediate Functions

You can specify that a function should only execute if there is nothing
the queue. The library provides the flag IMMEDIATE for this purpose.
a function specified as immediate executes when functions are in the
queue, it will return failure without doing anything. Otherwise, the fun
tion will return when it has completed.

Function Timing Summary

The queued and immediate settings are not mutually exclusive. A func-
tion can be declared to be either one, neither, or both. The behavior
each setting is summarized below:

Neither queued nor immediate. Executes when all functions in the
queue have completed, and returns when execution is completed.
is the default.

Queued. Execution is deferred until previously queued functions ha
executed. The function returns immediately, and the program cont
ues to the next statement. The frame grabber executes the queue
instructions concurrently with the program’s execution of any non-
frame grabber functions.
68

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

he

es
truc-
 a
ntil

.
e

-

px510.bk : Program.fm Page 69 Friday, September 12, 1997 9:38 AM
Immediate. Only executes if there are no functions in the queue. T
function returns when execution is completed.

Queued and Immediate. Only executes if there are no functions in
the queue. The function returns immediately, and program continu
to the next statement. The frame grabber executes the queued ins
tions concurrently with any non-frame grabber functions. If there is
non-queued function in progress, the application doesn’t proceed u
that function is complete.

Many applications don’t require the QUEUED and IMMEDIATE flags
If you don’t use either flag, the function executes as soon as the fram
grabber has finished the previous operation, and the function returns
when the frame grabber has finished executing it.

You can use the QUEUED and IMMEDIATE flags with any of these
functions:

These functions return a handle that can be used by IsFinished() and
WaitFinished() to check their progress.

These functions always wait until all functions in the queue have com
pleted before executing:

Grab() ReadCache() SetOffset()

GrabToCache() SetCamera() Wait()

GrabTriggered() SetFineGain()

CacheTriggered() SetGainRange()

GetCamera() GetOffset() SetLUT()

GetFineGain() GetTriggerType() SetTriggerType()

GetGainRange() SetFieldSize() SetVideoFormat()

GetLUT() SetImageSize()
 69

Imagenation

urn
-

s

 an

ore

px510.bk : Program.fm Page 70 Friday, September 12, 1997 9:38 AM
GrabContinuous() always acts as if it were declared immediate.

All functions not listed here will execute when they are called and ret
when they have completed. They may execute concurrently with func
tions in the queue.

Using Flags with Function Calls

Several of the frame grabber control functions take a set of flag bits a
one of their parameters. The possible flags are:

Flags can be combined with the bitwise OR operator.

The default behavior (flags = 0) for a function that uses flags is:

• Wait until the frame grabber is not busy.
• Start on the next field.
• Process a two-field, interlaced frame (if the function processes

image).
• Return after the operation is complete.

Not all flags are relevant to each function that has a flags parameter. For
example, some functions, such as SetOffset() and SetFineGain(), ign

Flag Description

CACHE Captured data is sent to the onboard cache.

EITHER Operation will start on the next field.

FIELD0 Operation will start on an even video field.

FIELD1 Operation will start on an odd video field.

SINGLE_FLD Operation will only apply to one field.

IMMEDIATE Operation will fail if the frame grabber is busy.

QUEUED Operation will be queued for later processing.
70

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

s

ri-
can

ave
avail-

g

ch
, you

 the
irst,

long
To
ou

px510.bk : Program.fm Page 71 Friday, September 12, 1997 9:38 AM
the FIELD choice flags and always operate as if the EITHER flag wa
specified.

Specifying Image Capture Resolution

PX frame grabbers sample lines of the incoming video signal at a ho
zontal resolution of either 640 pixels per scan line or 768 pixels per s
line. Vertical resolution is always one pixel per scan line. Using the
SetImageSize() function you can choose how much of this image data
you want to work with. By selecting only a subset of the image, you s
memory and bandwidth on the bus, leaving more of these resources
able to other parts of your application and for other applications.

When you’re capturing fields, rather than entire frames, use the
SetFieldSize() function rather than SetImageSize(). You’ll be capturin
fields rather than frames when working with non-interlaced video
sources, such as progressive-scan cameras.

For cameras that don’t produce continuous vertical sync signals, whi
the frame grabber needs to determine the start and end of each frame
can use the SetVideoFormat() function to tell the frame grabber what
field length to expect. When you need to change the video format and
image size for a subsequent capture, always call SetVideoFormat() f
and then call SetImageSize() (or SetFieldSize()) before capturing the
image.

Scaling Images

PX frame grabbers can scale the video image by discarding pixels a
both the horizontal and vertical axes, a technique called decimation.
scale an image horizontally, you simply specify the number of pixels y
want per horizontal scan line, using the resx parameter of
SetImageSize(). Valid values for resx are: resx= 640/m for NTSC or
 71

Imagenation

ou
sed

r

de-

0-
es
xi-
n

ntal

px510.bk : Program.fm Page 72 Friday, September 12, 1997 9:38 AM
768/m for CCIR/PAL, where m is an integer, 1≤ m ≤ 64. Round all val-
ues up to the next larger integer.

To scale an image vertically, you don’t specify the number of pixels y
want along the vertical axis. Instead, you specify vertical resolution ba
on a value of 256 equaling one pixel per line of video: resy= 256/n,
where n is an integer, 1≤ n ≤ 256. Round all values up to the next large
integer. For example, specifying a vertical resolution of resy= 256 gives
one pixel per line of video; specifying resy= 128 gives one pixel for
every two lines of video; and so on. You specify vertical resolution in
pendent of the video mode; specifying resy= 128 gives you one pixel for
every two lines of video in either NTSC or CCIR/PAL.

The default horizontal resolution is 640 pixels per scan line, and the
default vertical resolution is 256 (one pixel per scan line) for all video
formats. On a typical display monitor with a 4 x 3 aspect ratio, the 64
pixel horizontal resolution gives approximately square pixels for imag
in NTSC video mode; the 768-pixel horizontal resolution gives appro
mately square pixels for images in CCIR/PAL video mode, but you ca
use either resolution with either video mode.

For image scale factors between one and 1/20, valid values for horizo
and vertical resolution are listed in the following table.

Scale resx resx resy Scale resx resx resy

Factor NTSC CCIR Factor NTSC CCIR

1 640 768 256 1/11 59 70 24

1/2 320 384 128 1/12 54 64 22

1/3 214 256 86 1/13 50 60 20

1/4 160 192 64 1/14 46 55 19

1/5 128 154 52 1/15 43 52 18

1/6 107 128 43 1/16 40 48 16

1/7 92 110 37 1/17 38 46 16
72

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

erti-
w

 col-
ping
plied.

acti-
;

n

or

px510.bk : Program.fm Page 73 Friday, September 12, 1997 9:38 AM
Cropping Images

In addition to scaling images, SetImageSize() lets you crop images v
cally and horizontally. You crop an image by specifying the starting ro
and number of rows to keep, and the starting column and number of
umns to keep. If you are also scaling the image, you specify the crop
parameters based on the size of the image after scaling has been ap

Starting row—any integer in the range 0≤ y0 ≤ 1,023. While you can
specify any integer up to 1,023, for standard video signals your pr
cal upper limit will be the last line of valid video (line 485 for NTSC
line 575 for CCIR/PAL).

Number of rows—any integer in the range 1≤ dy ≤ (1,024 - y0). For
standard video signals, your practical upper limit will normally be
lower, depending on the type of video: dy≤ (486 - y0) for NTSC;
dy ≤ (576 - y0) for CCIR/PAL.

Starting column—any value in the range 0≤ x0 ≤ (resx - 1).

Number of columns—any value in the range 1≤ dx ≤ resx.

The figure below shows an example of an NTSC image that has bee
scaled to 1/20 of full size, or 32 pixels by 26 pixels. From the table of
scale factors on page 72, you would specify the scaling parameters f
this image as resx= 32 and resy= 13. If you want to crop the image to
get a rectangular image 16 pixels by 16 pixels from the center of the

1/8 80 96 32 1/18 36 43 15

1/9 72 86 29 1/19 34 41 14

1/10 64 77 26 1/20 32 39 13

Scale resx resx resy Scale resx resx resy

Factor NTSC CCIR Factor NTSC CCIR
 73

Imagenation

f

lid
w
 of
L)
of

px510.bk : Program.fm Page 74 Friday, September 12, 1997 9:38 AM
scaled image, you would specify the cropping parameters as x0 = 8,
dx= 16, y0 = 5, and dy = 16.

For all video formats, the default starting row is row is y0 = 4, and the
default number of rows is dy = 480. For PX frame grabbers, row zero o
the video image is the first row of valid video.

Note
NTSC and CCIR/PAL video signals have only a half row of va
video on the first and last rows of each frame. The first line (ro
zero for both formats) contains valid video for only the last half
the row. The last line (row 485 for NTSC, row 575 for CCIR/PA
contains valid video for only the first half. If you include either
these rows in your image data, the entire row will be sampled.

310

25

0

8 23

5

20

16 pixels

16
 p

ix
el

s

74

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

che
or-
nt to
read
pture.

des

nd

he

t
e

e,

r-
is

px510.bk : Program.fm Page 75 Friday, September 12, 1997 9:38 AM
Calling the SetImageSize() function after grabbing an image to the ca
and before calling ReadCache() can cause ReadCache() to work inc
rectly. If you’re using ReadCache() to access image data, and you wa
change the image size parameters for subsequent captures, always
the cache first and then change the image parameters for the next ca

Grayscale Resolution

Grayscale resolution is always eight bits per pixel, providing 256 sha
of gray.

Frame and File Input/Output

The library provides functions for writing and reading image data to a
from files. You can read and write unformatted (binary) files and Win-
dows BMP formatted files. Formatted files include information about t
image, including the width, height, and number of bits per pixel, while
binary files include only the pixel values.

BMP Files

The BMP routines ReadBMP() and WriteBMP() read and write 8-bit
(256-color) image files. If a BMP file is read into a frame that does no
have room to store the entire BMP image, the image is clipped on th
right and bottom edges. If the BMP file image is smaller than the fram
the image is padded on the right and bottom with zeros.

Binary Files

The routines ReadBin() and WriteBin() read and write unformatted
files. Unformatted files contain no information on an image’s height,
width, or number of bits per pixel, so you must keep track of that info
mation. For example, nothing prevents you from saving a frame that
 75

Imagenation

ad-
en

f

orts

unc-

ll be

led,

 is

me
 be
e

he
o

px510.bk : Program.fm Page 76 Friday, September 12, 1997 9:38 AM
320 pixels wide and 160 pixels tall in an unformatted file, and then re
ing that file into a frame that is 160 pixels wide and 320 pixels tall, ev
though each line of the original frame will occupy two lines in the new
frame. If you use unformatted files, keep track of the characteristics o
the stored frames.

Using the Video Display DLL

The Video Display DLL (PXDV) is a simple tool for displaying video
images in a window. Since it is a standard DLL, it can be used with
Visual Basic, C, and other languages that can call DLLs. PXDV supp
only one operation: copying an arbitrary rectangle of an image frame
onto an arbitrary rectangle of a window's client area. There are two f
tions that are needed for this purpose:

void pxSetWindowSize(int x, int y, int dx, int dy) This function
specifies the position and size of the rectangle where the image wi
drawn, in units of pixels relative to the client area of the window
where the drawing takes place. If pxSetWindowSize() is never cal
the default values are x = 0, y = 0, d x= 640, and dy = 512.

void pxPaintDisplay(HDC hdc, FRAMEHANDLE frh, int x, int y,
int dx, int dy) This function takes the rectangular area specified byx,
y, dx, and dy from the frame frh, stretches it to fit the rectangle set by
pxSetWindowSize(), and draws it into the device context hdc, which
should be a valid device context for the window in which the image
to appear.

The frame pointer used by pxPaintDisplay() must reference a valid fra
created by a call to the PX500 DLL. This means that the library must
initialized properly and a frame must be allocated before PXDV can b
used.

PXDV doesn’t necessarily use the most efficient techniques to pipe t
video information to a window. It is intended to be a tool to make vide
76

Chapter 4 Programming PX Frame Grabbers

P
rogram

m
ing P

X

F
ram

e G
rabbers

are

ed

the
am’s
ader

d

a-
ge to

er
es
ro-
and

px510.bk : Program.fm Page 77 Friday, September 12, 1997 9:38 AM
display as easy as possible, and may not be the best solution if you
concerned primarily with performance.

To incorporate the Video Display DLL into your programs, you will ne
these files:

To link to the DLL, you must include the .BAS files in a Visual Basic
program. If you want to use this DLL with a C program, you must put
prototypes of the functions (as they appear on page 76) in your progr
source or header files; these prototypes do not appear in the main he
files.

On the distribution disk, there is a sample Visual Basic program calle
ZOOM which uses the Video Display DLL to display video from a PX
frame grabber in a window with zoom and pan controls. This program
demonstrates several useful techniques, including the proper initializ
tion of the necessary libraries and the use of a timer to cause the ima
be continuously updated.

Developing a Menu-Based User Interface for DOS
Applications

The VESAMENU library is a DOS-based VGA display and menu build
for both 16-bit and Watcom 32-bit DOS applications. The library mak
it easy to create and display a graphics menu-based interface for a p
gram. Imagenation used this library to create the interface for PCIVU
for most of the DOS sample programs on the PX distribution disks.

Windows 3.1 Windows 95 Windows NT

PXDV.LIB

PXDV.DLL

PXDV.BAS

PXDV95.LIB

PXDV95.DLL

PXDV95.BAS

PXDVNT.LIB

PXDVNT.DLL

PXDVNT.BAS
 77

Imagenation

nd
ally
 sup-
h-
sign
us
s

upt.
d,

px510.bk : Program.fm Page 78 Friday, September 12, 1997 9:38 AM
The library is described in detail in Chapter 6, VESAMENU Library, on
page 121.

Frame Grabbing and PCI Bus Performance

Data transfers can take advantage of the maximum 132 MB per seco
burst transfer rate of the PCI bus. Although actual throughput is typic
well below the maximum burst rate, a properly-designed system can
port real-time transfer and display of video image data. Actual throug
put is affected by the PCI implementation on the motherboard, the de
of the PCI video controller or other PCI device, and the load on the b
due to all PCI devices using it. For more information, including result
for several common configurations, see Appendix E, PCI Bus System
Performance, on page 163.

If the PCI bus is overloaded, it’s possible for captured data to be corr
Although the Grab functions can’t determine if data is being corrupte
CheckError() will return the value ERR_CORRUPT.
78

F
unction

R
eference

he

 all
 for

he
n val-
the

px510.bk : 16_lib.fm Page 79 Friday, September 12, 1997 9:38 AM
Function Reference 5

The chapter is a complete, alphabetical function reference for the PX
libraries and DLLs. For additional information on using the functions,
see Chapter 4, Programming PX Frame Grabbers, on page 35.

The 16-bit Windows 3.1 PX DLLs use the Pascal calling convention. T
32-bit Windows 95 and Windows NT PX DLLs use the _stdcall calling
convention. All variables declared as int are 16 bits long in DOS and
Windows 3.1 and 32 bits long in DOS/4GW, Windows_95, and
Windows_NT.

This function reference is a general guide for using the functions with
operating systems and languages. The functions will work as written
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know t
definitions of constants and the sizes of the parameters and the retur
ues for the function calls. You can find the definitions of constants in

5

 79

Imagenation

es

y
erat-

, the
he

e

px510.bk : 16_lib.fm Page 80 Friday, September 12, 1997 9:38 AM
header files for C and Visual BASIC. The following table gives the siz
of the various data types that are used by the PX library.

FGHANDLE and FRAMEHANDLE are defined types; to see how the
are defined, refer to the C language header file for the appropriate op
ing system. Void is a special type. When it is the type for a parameter
function has no parameters; when it is the type for the return value, t
function does not return a value.

The library and DLL interface is almost identical for all operating sys-
tems. Functions that do not apply to a particular operating system ar
noted with an icon:

Does not apply to Windows NT

Does not apply to DOS

AllocateAddress

Syntax FRAMEHANDLE AllocateAddress(unsigned long address, int dx,
int dy, int bits);

Return Value A handle for the allocated frame structure.
0 on failure.

Type Size

unsigned char 8 bits

long, unsigned long 32 bits

void *, unsigned char *, int *,
char *, LPSTR

32 bits

int 16 bits in DOS and Windows 3.x;
32 bits in DOS/4GW, Windows 95,
and Windows NT

NT

DOS

NT
80

Chapter 5 Function Reference

F
unction

R
eference

 the
X

er
d not
ng

his
ill
ress.

er,
X

r

px510.bk : 16_lib.fm Page 81 Friday, September 12, 1997 9:38 AM
Description Creates a frame of size dx by dy, with the specified number of bits per
pixel, from the memory at the specified physical address. It does no
checking to determine whether the given address is valid, or whether
memory at the given address is being used for other purposes. For P
frame grabbers, dx must be a multiple of four, and bits is always 8.

This function lets you program specialized operations, like peer-to-pe
transfers between the frame grabber and another PCI device. It shoul
be used with linear addresses unless you know the processor's pagi
mode is disabled.

FreeFrame() should be called when the frame is no longer needed. T
will de-allocate memory associated with the FRAME structure, but w
not attempt to free any resources associated with the given buffer add

See Also AllocateBuffer, FreeFrame

AllocateBuffer

Syntax FRAMEHANDLE AllocateBuffer(int dx, int dy, int bits);

Return Value A handle to the allocated FRAME structure.
0 on failure.

Description Reserves memory for an image buffer of size dx by dy, with the specified
number of bits per pixel. For the buffer to be usable by the frame grabb
dx and dy must be at least as large as the image being grabbed. For P
frame grabbers, dx must be a multiple of four, and bits is always 8.
FreeFrame() should be used to release the frame when it is no longe
needed.

See Also FreeFrame

AllocateFG

Syntax FGHANDLE AllocateFG(int n);

Return Value A handle for the requested frame grabber.
0 on failure.
 81

Imagenation

stem

bber

ecify

ust

. The
a
ize

a-

px510.bk : 16_lib.fm Page 82 Friday, September 12, 1997 9:38 AM
Description AllocateFG() attempts to find a frame grabber and give the program
access to it. The program can request a specific frame grabber in a sy
that has more than one by specifying a number, n. Due to the design of
the PCI bus, bus slot 0 doesn’t necessarily correspond to frame grabber0,
and the number of the frame grabber in a particular bus slot can vary
between different operating systems. You can determine which frame
grabber is which by connecting a video source to only one frame gra
and then using the PCIVU program (or your own program) to switch
between frame grabbers. To request any available frame grabber, sp
n < 0.

If the frame grabber is available, AllocateFG() returns a handle that m
be used in other library functions that refer to the frame grabber.

The program should call FreeFG() on the frame grabber when it is no
longer needed.

See Also FreeFG

CacheTriggered

Syntax int CacheTriggered(FGHANDLE fgh, int deltime, int flags);

Return Value Non-zero if successful.
0 on failure.

Description After the frame grabber receives a trigger signal, it waits deltime field
times and then captures a video image to the onboard cache memory
deltime parameter can be used to delay the capture to allow time for
camera to reset, for example. This function can be used to synchron
frame grabbing to an external device.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

For more information on the video cache RAM, see Sending Images to
the Onboard Video Cache RAM, on page 51.

See Also GrabTriggered, SetTriggerType, ReadCache
82

Chapter 5 Function Reference

F
unction

R
eference

d
s

d
e

ss
a-

px510.bk : 16_lib.fm Page 83 Friday, September 12, 1997 9:38 AM
CheckEqual

Syntax int CheckEqual(FGHANDLE fgh);

Return Value Non-zero if equal.
0 if not equal.

Description Compares the grayscale value of each pixel in the previously digitize
field against the value specified by SetCompare(). If any pixel value i
equal to the set value, CheckEqual() returns a non-zero value.

See Also SetCompare, CheckGreater

CheckError

Syntax int CheckError(FGHANDLE fgh);

Return Value CheckError() returns the following values:

Error Returned Description

ERR_BAD_IRQ*† An interrupt line hasn’t been properly assigne
to one or more of the frame grabbers. On som
systems, you might need to configure the
BIOS to assign these interrupts properly.

ERR_CORRUPT Captured image data is corrupt.

ERR_NONE No error detected.

ERR_NOT_VALID fgh is not a valid frame grabber handle.

ERR_NO_ADDRESS*† The library couldn't locate enough free addre
space in upper memory to enable communic
tion with the frame grabber.

ERR_NO_DEVICES No PX frame grabbers were detected.
 83

Imagenation

ine

d
s

px510.bk : 16_lib.fm Page 84 Friday, September 12, 1997 9:38 AM
Description If fgh is NULL, CheckError() checks to determine whether any of a
known set of errors occurred during initialization. These initialization
errors are shown above marked with an asterisk.

If fgh is not NULL, CheckError() queries the frame grabber to determ
whether any of a known set of errors occurred. These are the errors
shown above without asterisks. Any of these errors are automatically
cleared when CheckError() returns.

CheckGreater

Syntax int CheckGreater(FGHANDLE fgh);

Return Value Non-zero if greater.
0 if not greater.

Description Compares the grayscale value of each pixel in the previously digitize
field against the value specified by SetCompare(). If any pixel value i
greater than the set value, CheckGreater() returns a non-zero value.

See Also SetCompare, CheckEqual

ERR_NO_DOS The DOS library tried to load while Windows
was running.

ERR_NO_PCI*† No PCI BIOS was detected. Your BIOS ROM
might not support PCI.

* Initialization error.

† If the VxD detects one of these errors, it will not allow Windows to
load. These errors can only be reported by a DOS application.

Error Returned Description
84

Chapter 5 Function Reference

F
unction

R
eference

ry().
 A

p,

px510.bk : 16_lib.fm Page 85 Friday, September 12, 1997 9:38 AM
ExitLibrary

Syntax void ExitLibrary(void);

Return Value None.

Description Returns to the system any resources that were allocated by InitLibra
ExitLibrary() should be the last library function called by the program.
program that exits after calling InitLibrary(), but before calling
ExitLibrary(), will leave the computer in an unstable state and might
crash the operating system.

See Also InitLibrary

FireStrobe

Syntax int FireStrobe(FGHANDLE fgh, int command);

Return Value Non-zero if successful.
0 on failure.

Description Controls the strobe activity. The command parameter can accept the fol-
lowing values:

Value Description

STROBE_STOP Turns off all strobe activity immediately for both
normal and triggered strobe modes. Does not
affect the strobe type.

STROBE_0 Fires a complete strobe sequence (strobe 0, ga
strobe 1).

STROBE_GAP Fires the gap, followed by strobe 1.

STROBE 1 Fires strobe 1 only.
 85

Imagenation

can-
rma-

e

 the
ion
 can-

inter
ce. In
fer().

rs
rar-

 the

px510.bk : 16_lib.fm Page 86 Friday, September 12, 1997 9:38 AM
If a strobe sequence is in progress, calling FireStrobe() immediately
cels the current strobe sequence and starts a new one. For more info
tion, see Strobes, on page 59.

See Also GetStrobeState, SetStrobePeriods, SetStrobePolarity, SetStrobeTyp

FrameAddress

Syntax unsigned long FrameAddress(FRAMEHANDLE frh);

Return Value The physical address of the frame’s image buffer.
0 on failure.

Description Returns the physical address of the specified frame’s image buffer. If
frame’s image buffer doesn’t have a fixed physical address, the funct
fails. Frames whose image buffers are not at a fixed physical address
not be accessed by the frame grabber.

The physical address can not, in general, be converted to a C-style po
because of segmentation and paging of the processor's address spa
order to get a logical address (a pointer) to this buffer, use FrameBuf

This function is useful for writing low-level code, such as device drive
or memory managers, that need to interact with the frame grabber lib
ies.

See Also FrameBuffer

FrameBits

Syntax int FrameBits(FRAMEHANDLE frh);

Return Value Number of bits per pixel.
0 if the frame handle is invalid.

Description Returns the number of bits per pixel in the specified frame. Currently
frame grabber can only write to 8-bit frames.

NT
86

Chapter 5 Function Reference

F
unction

R
eference

, or
n

px510.bk : 16_lib.fm Page 87 Friday, September 12, 1997 9:38 AM
FrameBuffer

Syntax void *FrameBuffer(FRAMEHANDLE frh);

Return Value The logical address of the frame’s image buffer.
0 if the frame handle is invalid.

Description Returns a pointer to the start of the data buffer of the specified frame
NULL if the data is not in the program's address space. An applicatio
can use this pointer to access a frame’s image data.

See Also FrameAddress

FrameHeight

Syntax int FrameHeight(FRAMEHANDLE frh);

Return Value The height of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the height of a frame created with AllocateAddress() or with
AllocateBuffer().

See Also FrameWidth

FrameWidth

Syntax int FrameWidth(FRAMEHANDLE frh);

Return Value The width of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the width of a frame created with AllocateAddress() or with
AllocateBuffer().

See Also FrameHeight
 87

Imagenation

waits

px510.bk : 16_lib.fm Page 88 Friday, September 12, 1997 9:38 AM
FreeFG

Syntax void FreeFG(FGHANDLE fgh);

Return Value None.

Description Releases control of a frame grabber (previously allocated with the
AllocateFG() function) after the program is finished using the frame
grabber.

See Also AllocateFG

FreeFrame

Syntax void FreeFrame(FRAMEHANDLE frh);

Return Value None.

Description Returns memory associated with a FRAMEHANDLE to the system.

See Also AllocateBuffer

GetCamera

Syntax int GetCamera(FGHANDLE fgh);

Return Value The current camera input.
-1 on failure.

Description Returns the active camera input of the specified frame grabber. Use
SetCamera() to specify the active camera input.

If the frame grabber is processing queued operations, GetCamera()
for the operations to finish before executing.

See Also SetCamera
88

Chapter 5 Function Reference

F
unction

R
eference

ffer

e last

bber.

,

px510.bk : 16_lib.fm Page 89 Friday, September 12, 1997 9:38 AM
GetColumn

Syntax void GetColumn(FRAMEHANDLE frh, unsigned char *buf, int col);

Return Value None.

Description Copies a column of the image stored in frame frh into the buffer buf. The
columns are numbered starting with 0 at the left of the frame. The bu
buf must be at least as large as FrameHeight(frh). At present
GetColumn() only works on frames with 8-bit pixels.

See Also GetRow, PutColumn, PutRow

GetFieldCount

Syntax long GetFieldCount(FGHANDLE fgh);

Return Value Returns the field count.
0 if fgh is not a valid handle.

Description Returns the number of fields the frame grabber has received since th
reset of the board. You can set the starting count by using the
SetFieldCount() function. For more information, see Counting Fields, on
page 62.

See Also SetFieldCount

GetFieldLength

Syntax int GetFieldLength(FGHANDLE fgh);

Return Value The field length of the last video field, as measured by the frame gra
-1 on error.

Description Returns the field length of the last video field, including vertical blank
for the specified frame grabber.

See Also GetFieldLength
 89

Imagenation

e()

he

px510.bk : 16_lib.fm Page 90 Friday, September 12, 1997 9:38 AM
GetFineGain

Syntax int GetFineGain(FGHANDLE fgh);

Return Value The current fine gain setting.
-1 on failure.

Description Returns the fine gain setting of the specified frame grabber. Use
SetFineGain() to specify the gain.

If the frame grabber is processing queued operations, GetFineGain()
waits for the operations to finish before executing.

See Also SetFineGain

GetGainRange

Syntax int GetGainRange(FGHANDLE fgh);

Return Value The current gain range.
-1 on failure.

Description Returns the gain range of the specified frame grabber. Use
SetGainRange() to specify the gain range.

If the frame grabber is processing queued operations, GetGainRang
waits for the operations to finish before executing.

See Also SetGainRange

GetLUT

Syntax int GetLUT(FGHANDLE fgh, int first_address, int length, int *buf);

Return Value Non-zero if successful.
0 on failure.

Description Reads the frame grabber's input lookup table, or a section of it, into t
array buf. The section to be read is specified by first_address and the
number of entries (length) desired. The buffer must have at least length
entries.
90

Chapter 5 Function Reference

F
unction

R
eference

 for

pec-

its

px510.bk : 16_lib.fm Page 91 Friday, September 12, 1997 9:38 AM
If the frame grabber is processing queued operations, GetLUT() waits
the operations to finish before executing.

See Also SetLUT

GetOffset

Syntax int GetOffset(FGHANDLE fgh);

Return Value The current offset.
255 on failure.

Description Returns the offset of the specified frame grabber. Use SetOffset() to s
ify the offset.

If the frame grabber is processing queued operations, GetOffset() wa
for the operations to finish before executing.

See Also SetOffset

GetRectangle

Syntax void GetRectangle(FRAMEHANDLE frh, unsigned char *buf, int x1,
int y1, int dx, int dy);

Return Value None.

Description Copies a rectangular region of the frame frh into the buffer buf. The rect-
angle has upper left corner (x1,y1) in the source frame, width dx, and
height dy. The buffer buf must be at least as large as dx*dy. At present
GetRectangle() only works on frames with 8-bit pixels.

See Also PutRectangle

GetRow

Syntax void GetRow(FRAMEHANDLE frh, unsigned char *buf, int row);

Return Value None.
 91

Imagenation

he

s are
_1

e
gen-

px510.bk : 16_lib.fm Page 92 Friday, September 12, 1997 9:38 AM
Description Copies a row of the image stored in frame frh into the buffer buf. The
rows are numbered starting with 0 at the top of the frame. The bufferbuf
must be at least as large as FrameWidth(frh). At present GetRow() only
works on frames with 8-bit pixels.

See Also GetColumn, PutColumn, PutRow

GetStrobeState

Syntax int GetStrobeState(FGHANDLE fgh);

Return Value Strobe state information if successful.
-1 on failure.

Description Returns the current state of the strobe lines in a collection of flags. T
flags are:

While a strobe sequence is in progress (STROBING is true) or strobe
disabled (STROBE_OFF is true), the flags STROBE_0 and STROBE
won’t necessarily return up-to-date values.

While strobes are disabled (STROBE_OFF is true), an external devic
can drive the strobe lines. This allows the strobe lines to be used as
eral-purpose input lines, using GetStrobeState() to read the lines.

See Also FireStrobe, SetStrobeType

Return Value Description

STROBE_0 Strobe 0 is high (+5 V). Absence of this flag
indicates strobe 0 is low (0 V).

STROBE_1 Strobe 1 is high (+5 V). Absence of this flag
indicates strobe 1 is low (0 V).

STROBING A strobe sequence is in progress.

STROBE_OFF Strobes are disabled (tri-stated). This is the
default.
92

Chapter 5 Function Reference

F
unction

R
eference

mat

ish

 hor-

a-

ab-

px510.bk : 16_lib.fm Page 93 Friday, September 12, 1997 9:38 AM
GetSyncType

Syntax int GetSyncType(FGHANDLE fgh);

Return Value Current synchronization mode.
-1 on failure.

Description Returns the currently selected synchronization mode in the same for
as used by SetVideoFormat().

See Also SetVideoFormat

GetTriggerType

Syntax int GetTriggerType(FGHANDLE fgh);

Return Value Trigger type.
-1 on failure.

Description Returns the current trigger type in the same format used by
SetTriggerType(). GetTriggerType() waits for the frame grabber to fin
processing any queued operations before executing.

See Also SetTriggerType, GrabTriggered

Grab

Syntax int Grab(FGHANDLE fgh, FRAMEHANDLE frh, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Captures a video image and writes it to frame buffer frh. Grab() fails if
the image size, as specified by SetImageSize(), is larger in either the
izontal or vertical dimension than the destination frame.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70. Grab() can also use the
special CACHE flag. When you specify the CACHE flag, the frame gr
 93

Imagenation

cified
e

s
.
e(),
tion

 a
ctly
on-
s are
on

ill

;

hen
data

px510.bk : 16_lib.fm Page 94 Friday, September 12, 1997 9:38 AM
ber copies the captured data to both the onboard cache and the spe
frame, if frh is valid; if frh is zero or invalid, the CACHE flag causes th
data to be captured only to the onboard cache.

See Also AllocateFG, AllocateBuffer

GrabContinuous

Syntax int GrabContinuous(FGHANDLE fgh, FRAMEHANDLE frh, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Turns continuous acquire mode on (if the flags parameter is GRAB_ON)
or off (if flags is GRAB_OFF) for a given frame grabber. In continuou
acquire mode, the buffer frh is continuously updated with new video data
GrabContinuous() fails if the image size, as specified by SetImageSiz
is larger in either the horizontal or vertical dimension than the destina
frame.

Continuous acquire mode can be useful for software that is watching
small number of pixels in every image, or for sending video data dire
to another PCI device, but also requires fast access to RAM. Using c
tinuous acquire mode while other memory accesses or PCI accesse
occurring might require more data to be transferred than is possible
some computers, resulting in corrupt video data. The Grab functions
can’t determine when data corruption is occurring, but CheckError() w
return ERR_CORRUPT.

In addition to setting continuous acquire mode, the parameter flags can
specify additional modes of operation for this function, except that
GrabContinuous() always behaves as if it were declared IMMEDIATE
you can’t use the QUEUED flag with GrabContinuous(). If flags is 0, the
default modes will be used. See Using Flags with Function Calls, on
page 70. GrabContinuous() can also use the special CACHE flag. W
you specify the CACHE flag, the frame grabber copies the captured
to both the onboard cache and the specified frame, if frh is valid. If frh is
94

Chapter 5 Function Reference

F
unction

R
eference

 the

t

ry.

a-

not
n’t

ra to

px510.bk : 16_lib.fm Page 95 Friday, September 12, 1997 9:38 AM
zero or invalid, the CACHE flag causes the data to be captured only to
onboard cache.

If you have set up GrabContinuous() to capture the data to both the
onboard cache and a frame, you can’t turn it off selectively. You mus
turn off both capture modes.

GrabToCache

Syntax int GrabToCache(FGHANDLE fgh, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Captures a video image to the frame grabber's internal cache memo

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70. Using the SINGLE_FLD
flag to grab a specific field is possible, but does not prevent the field
grabbed from being overwritten in the cache, so single-field grabs ca
be reliably used to store two images in the cache simultaneously.

For more information on the video cache RAM, see Sending Images to
the Onboard Video Cache RAM, on page 51.

See Also ReadCache, HaveCache

GrabTriggered

Syntax int GrabTriggered(FGHANDLE fgh, FRAMEHANDLE frh, int deltime,
int flags);

Return Value Non-zero if successful.
0 on failure.

Description After the frame grabber receives a trigger signal, it waits deltime field
times and then captures a video image to the specified buffer. The deltime
parameter can be used to delay the capture to allow time for a came
 95

Imagenation

rab-

(), is
n

a-

nd the

 of

px510.bk : 16_lib.fm Page 96 Friday, September 12, 1997 9:38 AM
reset, for example. This function can be used to synchronize frame g
bing to an external device.

GrabTriggered() fails if the image size, as specified by SetImageSize
larger in either the horizontal or vertical dimension than the destinatio
frame.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70. GrabTriggered() can also
use the special CACHE flag. When you specify the CACHE flag, the
frame grabber copies the captured data to both the onboard cache a
specified frame, if frh is valid. If frh is zero or invalid, the CACHE flag
causes the data to be captured only to the onboard cache.

See Also Grab, SetTriggerType

HaveCache

Syntax int HaveCache(FGHANDLE fgh);

Return Value The number of lines of cache on the board.

Description Returns the amount of video cache installed on the board in number
lines of video that can be stored.

For more information on the video cache RAM, see Sending Images to
the Onboard Video Cache RAM, on page 51.

See Also ReadCache, GrabToCache

InitLibrary

Syntax int InitLibrary(void);

Return Value Number of available frame grabbers.
0 on failure.
96

Chapter 5 Function Reference

F
unction

R
eference

ers.
e

t

ssing
lso

e
,

re

px510.bk : 16_lib.fm Page 97 Friday, September 12, 1997 9:38 AM
Description Initializes library data structures and locates all available frame grabb
It must be called successfully before any other library functions can b
used.

InitLibrary() will usually fail only if no frame grabbers are detected, bu
may also fail under conditions of extremely low memory. When
InitLibrary() fails, use CheckError() to get the error.

For more information on using InitLibrary(), see Initializing and Exiting
the Library, on page 44.

See Also ExitLibrary

IsFinished

Syntax int IsFinished(FGHANDLE fgh, int handle);

Return Value Non-zero if the operation is finished.
0 if the specified operation has not completed.
-1 if the specified frame grabber is invalid.

Description Can be used to check whether a queued operation has finished by pa
the handle returned by the function that queued the operation. It can a
check whether all operations queued for a particular frame grabber ar
finished by using handle = 0. For more information on queued functions
see Timing the Execution of Functions, on page 64.

Many frame grabber control functions can queue operations if they a
passed the appropriate flags. For more information, see Using Flags with
Function Calls, on page 70.

See Also WaitFinished

KillQueue

Syntax void KillQueue(FGHANDLE fgh);

Return Value None.
 97

Imagenation

y

if a
have

a-

t

px510.bk : 16_lib.fm Page 98 Friday, September 12, 1997 9:38 AM
Description Aborts any operations in progress for the specified frame grabber. An
operations in the queue when this function is called will be removed,
although the operations might already have executed. For instance,
grab command was in the queue, some or all of the video data might
been written into the frame by the time the queue is killed.

This function takes several milliseconds to execute. It is intended prim
rily for recovering from error conditions.

PutColumn

Syntax void PutColumn(unsigned char *buf, FRAMEHANDLE frh, int col);

Return Value None.

Description Copies a column stored in the buffer buf into frame frh. The columns are
numbered starting with 0 at the left of the frame. The buffer buf must be
at least as large as FrameHeight(frh). At present PutColumn() only works
on frames with 8-bit pixels.

See Also Get Column, GetRow, PutRow

PutRectangle

Syntax void PutRectangle(unsigned char *buf, FRAMEHANDLE frh, int x1, in
y1, int dx, int dy);

Return Value None.

Description Copies a rectangular region from buffer buf into the frame frh. The rect-
angle goes into frh with its upper left corner at (x1,y1), width dx, and
height dy. The buffer buf must be at least as large as dx*dy. At present
PutRectangle() only works on frames with 8-bit pixels.

See Also GetRectangle
98

Chapter 5 Function Reference

F
unction

R
eference

e

px510.bk : 16_lib.fm Page 99 Friday, September 12, 1997 9:38 AM
PutRow

Syntax void PutRow(unsigned char *buf, FRAMEHANDLE frh, int row);

Return Value None.

Description Copies a row from the buffer buf into frame frh. The rows are numbered
starting with 0 at the top of the frame. The buffer buf must be at least as
large as FrameWidth(frh). At present PutRow() only works on frames
with 8-bit pixels.

See Also GetColumn, GetRow, PutColumn

ReadBin

Syntax int ReadBin(FRAMEHANDLE frh, char *fname);

Return Value The return values are:

Description Reads the unformatted binary file fname and copies it into frame buffer
frh. The function stores as much of the contents of fname in the buffer as
will fit. ReadBin() opens and closes the file fname.

When calling this function from a Windows program, the type of fname
should be LPSTR rather than char *.

See Also WriteBin

Return Value Description

SUCCESS The file was read successfully.

FILE_OPEN_ERROR The specified file could not be opened.

BAD_READ An error occurred while a file was being read.

INVALID_FRAME The frame handle is invalid, or the frame’s imag
data has no logical address.
 99

Imagenation

e

e is
tom

ot
d

its

px510.bk : 16_lib.fm Page 100 Friday, September 12, 1997 9:38 AM
ReadBMP

Syntax int ReadBMP(FRAMEHANDLE frh, char *fname);

Return Value The return values are:

Description Reads the image stored in the BMP file fname and copies it into frame
buffer frh. The function copies each row of the BMP image to a row in
the frame buffer. If the BMP image is smaller than the frame buffer, th
image is padded on the right and bottom with zeros. If the BMP imag
larger than the frame buffer, the image is clipped on the right and bot
to fit the frame buffer.

ReadBMP() opens and closes fname.

When calling this function from a Windows program, the type of fname
should be LPSTR rather than char *.

See Also WriteBMP

Return Value Description

SUCCESS The file was read successfully.

FILE_OPEN_ERROR The specified file could not be opened.

BAD_READ An error occurred while a file was being read.

WRONG_BITS ReadBMP() attempted to read a file that did n
have 8 bits per pixel. The BMP routines read an
write only 8-bit image files.

BAD_FILE ReadBMP() attempted to read a non-BMP-for-
matted file.

INVALID_FRAME The frame handle is invalid, the frame’s image
data has no logical address, or the number of b
in the frame is not 8.
100

Chapter 5 Function Reference

F
unction

R
eference

ry to
eci-

a-

d:

f

px510.bk : 16_lib.fm Page 101 Friday, September 12, 1997 9:38 AM
ReadCache

Syntax int ReadCache(FGHANDLE fgh, FRAMEHANDLE frh, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Copies a video image from the frame grabber's internal cache memo
the specified frame buffer. ReadCache() fails if the image size, as sp
fied by SetImageSize(), is larger in either the horizontal or vertical
dimension than the destination frame.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

For more information on the video cache RAM, see Sending Images to
the Onboard Video Cache RAM, on page 51.

See Also GrabToCache, HaveCache

ReadConfiguration

Syntax long ReadConfiguration(FGHANDLE fgh);

Return Value Board configuration information if successful.
-1 on failure.

Description Returns a collection of flags that specify the configuration of the boar

Return Value Description

PXC_BUS A multi-bit flag that specifies the bus design
the board is connected to. Flag values are
PXC_PCI, PXC_104_PLUS, and
PXC_COMPACT_PCI.

PXC_CACHE The board has the optional cache RAM.
HaveCache() will return the specific amount o
cache.
 101

Imagenation

e
atch

r

full

ull

cal

px510.bk : 16_lib.fm Page 102 Friday, September 12, 1997 9:38 AM
See Also HaveCache, ReadProtection, ReadRevision

ReadProtection

Syntax int ReadProtection(FGHANDLE fgh);

Return Value The protection key if successful.
0 on failure.

Description Returns the hardware protection key of the frame grabber. This will b
0x55 unless the frame grabber has been programmed with a key to m
your custom software.

PXC_CUSTOM_HW A multi-bit flag. Zero indicates the board is a
PX500; one indicates the board is a PX510 o
PX610.

PXC_H_CROP The board can crop the image to less than
width.

PXC_H_SCALE The board can scale the image horizontally.

PXC_NONINTERLACE The board supports non-interlaced video
sources.

PXC_STROBES The board has strobe outputs.

PXC_V_CROP The board can crop the image to less than f
height.

PXC_V_SCALE The board can scale the image vertically.

PXC_VIDEO_DRIVE The board can generate horizontal and verti
sync drive signals.

PXC_WEN_SYNC The board can use a window enable (WEN)
signal on the trigger input as a vertical sync
signal.

Return Value Description
102

Chapter 5 Function Reference

F
unction

R
eference

r.

 in
I

 oper-

e.
quent

a-

px510.bk : 16_lib.fm Page 103 Friday, September 12, 1997 9:38 AM
ReadRevision

Syntax int ReadRevision(FGHANDLE fgh);

Return Value The revision number if successful.
0 on failure.

Description Returns the hardware/firmware revision number of the frame grabbe

You can also get the revision number using the PXREV utility program
DOS or any of the PXGDI sample programs in Windows. The PXGD
programs display the revision number in the title bar.

ResetFG

Syntax void ResetFG(FGHANDLE fgh);

Return Value None.

Description Returns the frame grabber to a default state, and aborts any queued
ations. This function takes several milliseconds to execute.

See Also KillQueue

SetCamera

Syntax int SetCamera(FGHANDLE fgh, int camera, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Selects one of the video inputs (0-3) on the frame grabber to be activ
The camera attached to the selected input is the source for all subse
video input to the frame grabber.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

See Also GetCamera
 103

Imagenation

)

 fin-

ned

px510.bk : 16_lib.fm Page 104 Friday, September 12, 1997 9:38 AM
SetCompare

Syntax int SetCompare(FGHANDLE fgh, int value);

Return Value Non-zero if successful.
0 on failure.

Description Sets the grayscale value used by the CheckEqual() and CheckGreater(
functions for comparing pixel values in the previously digitized video
field.

See Also CheckEqual, CheckGreater

SetCurrentWindow

Syntax int SetCurrentWindow(FGHANDLE fgh, HWND window);

Return Value 1 if successful.
0 on failure.

Description SetCurrentWindow() is a Windows-only function. Following a call to
SetCurrentWindow(), every queued function sends a message when
ished to the window whose handle is HWND. If HWND is zero, no mes-
sages are sent. When the library is initialized, message posting is tur
off by default.

The format for messages is:

NT DOS

Parameter Value

message number Q_MESSAGE

wParam The handle returned by the function that queued
the operation. This is the same handle used by
IsFinished().

lParam 0L.
104

Chapter 5 Function Reference

F
unction

R
eference

grab-
ead

d

es-
e

red to
r
re

px510.bk : 16_lib.fm Page 105 Friday, September 12, 1997 9:38 AM
You can use this function to schedule queued events from the frame
ber in the same way you schedule events for other Windows I/O, inst
of using IsFinished().

In the example below, the window procedure for the window identifie
by hwnd will eventually receive a message with wParam == h1 to indi-
cate that the frame grab to frh is complete:

// fgh should be a valid frame grabber handle, as
returned by AllocateFG
// hwnd should be a valid window handle.
// frh should be a valid frame handle, as returned by
AllocateBuffer
SetCurrentWindow(fgh,hwnd);
h1=Grab(fgh,frh,QUEUED);

Only functions with the QUEUED flag set will generate messages. M
sages always go to the window specified as the current window at th
time the function is called. For example, the following code causes one
message to be sent to each window.

SetCurrentWindow(fgh,window1);
Grab(fgh,frh,QUEUED);
SetCurrentWindow(fgh,window2);
Grab(fgh,frh,QUEUED);

Calling SetCurrentWindow() with hwnd= 0 turns off message posting
for functions called after that time. However, functions already in the
queue will continue to post messages, so programs should be prepa
process all the messages they have requested. Calling KillQueue() o
ResetFG() will prevent messages from being sent by functions that a
successfully cancelled, but functions that were in the queue when
KillQueue() was called may have just finished execution and already
posted their messages.

ResetFG() turns off message posting, but KillQueue() does not.

See Also IsFinished
 105

Imagenation

ig-

os-

s-

px510.bk : 16_lib.fm Page 106 Friday, September 12, 1997 9:38 AM
SetDrivePolarity

Syntax int SetDrivePolarity(FGHANDLE fgh, int vdrive, int hdrive);

Return Value Non-zero if successful.
0 on failure.

Description Sets the polarity of the horizontal and vertical synchronization drive s
nals:

0 = active high.
1 = active low.

See Also SetDriveType

SetDriveType

Syntax int SetDriveType(FGHANDLE fgh, int mode);

Return Value Non-zero on success.
0 on failure.

Description Controls the mode of action for the synchronization drive lines. The p
sible values of mode are:

For more information, see Synchronization Drive Signals, on page 60.

See Also SetDrivePolarity, SetVideoFormat

Parameter Value

SYNC_NORMAL Both horizontal and vertical sync outputs are
active.

SYNC_OFF Both horizontal and vertical sync outputs are di
abled (tri-stated). This is the default.
106

Chapter 5 Function Reference

F
unction

R
eference

t
et, or
. For

x,

lt

px510.bk : 16_lib.fm Page 107 Friday, September 12, 1997 9:38 AM
SetFieldCount

Syntax int SetFieldCount(FGHANDLE fgh, long count);

Return Value Non-zero on success.
0 on failure.

Description Sets the starting value for counting incoming video fields. You can ge
the number of fields that have elapsed since the field count was last s
since the board was last reset, by using the GetFieldCount() function
more information, see Counting Fields, on page 62.

See Also GetFieldCount

SetFieldSize

Syntax int SetFieldSize(FGHANDLE fgh, int resx, int resy, int x0, int y0, int d
int dy, int bits);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the scaling and cropping of captured images for single-field
captures.

Parameter Description

fgh A handle to the frame grabber.

resx The horizontal resolution in pixels per scan line;
resx= 640/m for NTSC or 768/m for CCIR/PAL,
where m is an integer, 1≤ m ≤ 64. Round all values up
to the next larger integer. Default is 640.

resy The vertical resolution in lines per field;
resy= 256/n, where n is an integer, 1≤ n ≤ 256.
Round all values up to the next larger integer. Defau
is 256.
 107

Imagenation

 sub-

 is

h

px510.bk : 16_lib.fm Page 108 Friday, September 12, 1997 9:38 AM
When you need to change the video format and the image size for a
sequent capture, always call SetVideoFormat() first, and then call
SetFieldSize() before capturing the image.

SetFieldSize() waits for the frame grabber to finish processing any
queued operations before executing. For full-frame captures, use
SetImageSize() rather than SetFieldSize().

For more information on specifying the image size and resolution for
captures, see Specifying Image Capture Resolution, on page 71.

See Also SetImageSize

SetFineGain

Syntax int SetFineGain(FGHANDLE fgh, int gain, int flags);

Input Values An integer from 0 to 255.

Return Value Non-zero if successful.
0 on failure.

x0, y0
dx, dy

The cropping rectangle for the image to be captured
defined by the pixel column, x0, representing the left
edge; the row, y0, representing the top edge; the widt
of the rectangle, dx, in pixels; and the height of the
rectangle, dy, in pixels. Values must be in the ranges
0 ≤ x0 ≤ (resx - 1); 0≤ y0 ≤ 1,023; 1 ≤ dx≤ resx; and
1 ≤ dy ≤ (1,024 - y0). Also, dy should be no larger
than the total number of valid lines of video in the
image to be captured, as specified by
SetVideoFormat(). Defaults are x0= 0, y0= 4,
dx= 640, and dy= 480.

bits Number of bits per pixel. Must be 8 for PX frame
grabbers.

Parameter Description
108

Chapter 5 Function Reference

F
unction

R
eference

in
e.

a-

nd

px510.bk : 16_lib.fm Page 109 Friday, September 12, 1997 9:38 AM
Description Sets the fine video gain for the specified frame grabber. The overall ga
is determined from the combination of the fine gain and the gain rang
For more information, see Setting Video Offset and Gain, on page 55.

At power-up, the fine gain is set to 0.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

See Also SetGainRange, GetFineGain

SetGainRange

Syntax int SetGainRange(FGHANDLE fgh, int range, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Sets the range for the video gain for the specified frame grabber. Gain
ranges are:

The default at power-up is range = 1, for a gain range of 1 - 2.

The overall gain is determined from the combination of the fine gain a
the gain range. For more information, see Setting Video Offset and Gain,
on page 55.

range parameter Gain range

0 0.5 - 1

1 1 - 2

2 2 - 4

3 4 - 8
 109

Imagenation

a-

lt

px510.bk : 16_lib.fm Page 110 Friday, September 12, 1997 9:38 AM
The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

See Also SetFineGain, GetGainRange

SetImageSize

Syntax int SetImageSize(FGHANDLE fgh, int resx, int resy, int x0, int y0,
int dx, int dy, int bits);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the scaling and cropping of images for full-frame captures.

Parameter Description

fgh A handle to the frame grabber.

resx The horizontal resolution in pixels per scan line;
resx= 640/m for NTSC or 768/m for CCIR/PAL,
where m is an integer, 1≤ m ≤ 64. Round all values up
to the next larger integer. Default is 640.

resy The vertical resolution in lines per field;
resy= 256/n, where n is an integer, 1≤ n ≤ 256.
Round all values up to the next larger integer. Defau
is 256.
110

Chapter 5 Function Reference

F
unction

R
eference

 sub-

 is

h

px510.bk : 16_lib.fm Page 111 Friday, September 12, 1997 9:38 AM
When you need to change the video format and the image size for a
sequent capture, always call SetVideoFormat() first, and then call
SetImageSize() before capturing the image.

SetImageSize() waits for the frame grabber to finish processing any
queued operations before executing. When you are capturing single
fields, use SetFieldSize() rather than SetImageSize().

For more information on specifying the image size and resolution for
captures, see Specifying Image Capture Resolution, on page 71.

See Also SetFieldSize

SetLUT

Syntax int SetLUT(FGHANDLE fgh, int first_address, int length, int *buf);

Return Value Non-zero if successful.
0 on failure.

Description Changes values in the frame grabber's input lookup table (LUT). Any
subrange of the table can be changed by specifying the first_address and

x0, y0
dx, dy

The cropping rectangle for the image to be captured
defined by the pixel column, x0, representing the left
edge; the row, y0, representing the top edge; the widt
of the rectangle, dx, in pixels; and the height of the
rectangle, dy, in pixels. Values must be in the ranges
0 ≤ x0≤ (resx - 1); 0≤ y0≤ 1,023; 1 ≤ dx ≤ resx; and
1 ≤ dy≤ (1,024 - y0). Also, dy should be no larger
than the total number of valid lines of video in the
image to be captured, as specified by
SetVideoFormat(). Defaults are x0 = 0, y0 = 4,
dx = 640, and dy = 480.

bits Number of bits per pixel. Must be 8 for PX frame
grabbers.

Parameter Description
 111

Imagenation

eci-

a-

a-

es for
re-
/

px510.bk : 16_lib.fm Page 112 Friday, September 12, 1997 9:38 AM
length of the range to be altered. The data to be put in the table is sp
fied in the integer array buf, which must have at least length entries.

See Also GetLUT

SetOffset

Syntax int SetOffset(FGHANDLE fgh, int offset, int flags);

Input Values An integer from -128 to 127.

Return Value Non-zero if successful.
0 on failure.

Description Sets the video offset for the specified frame grabber. For more inform
tion, see Setting Video Offset and Gain, on page 55.

The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

SetStrobePeriods

Syntax int SetStrobePeriods(FGHANDLE fgh, int t1, int t2, int t3);

Return Value Non-zero if successful.
0 on failure.

Description Sets the length of the pulses and the length of the gap between puls
the two strobe lines. All times are in multiples of the horizontal scan f
quency (63.5 microseconds for NTSC and 64 microseconds for CCIR
PAL). t1 is the length of the strobe 0 pulse; t2 is the length of the gap
between pulses; t3 is the length of the strobe 1 pulse. The maximum
value for each of the three parameters is 65,535, even though int variables
are 32 bits long in DOS/4GW, Windows_95, and Windows_NT

For more information, see Strobes, on page 59.

See Also FireStrobe, GetStrobeState, SetStrobePolarity, SetStrobeType
112

Chapter 5 Function Reference

F
unction

R
eference

r can

ed.

px510.bk : 16_lib.fm Page 113 Friday, September 12, 1997 9:38 AM
SetStrobePolarity

Syntax int SetStrobePolarity(FGHANDLE fgh, int strobe, int polarity);

Return Value Non-zero if successful.
0 on failure.

Description Sets the polarity for the specified strobe line.:

0 = active high.
1 = active low.

For more information, see Strobes, on page 59.

See Also FireStrobe, SetStrobePeriods, SetStrobeType

SetStrobeType

Syntax int SetStrobeType(FGHANDLE fgh, int mode);

Return Value Non-zero if successful.
0 on failure.

Description Controls the mode of action for the strobe lines. The mode paramete
accept the following values:

For more information, see Strobes, on page 59.

See Also FireStrobe, GetStrobeState, SetStrobePolarity, SetStrobeType

Value Description

STROBE_NORMAL The FireStrobe() function controls the strobes.

STROBE_OFF Disables (tri-states) strobe lines. This is the
default.

STROBE_TRIG A complete strobe sequence (strobe 0, gap,
strobe 1) is initiated each time a trigger is detect
 113

Imagenation

c-

for

ing
; it

s.

s.

h.

.

e,

px510.bk : 16_lib.fm Page 114 Friday, September 12, 1997 9:38 AM
SetTriggerType

Syntax int SetTriggerType(FGHANDLE fgh, int type);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the TTL-level trigger signal the frame grabber's trigger dete
tion hardware is expecting. The possible values of type are:

The RISING and FALLING options can be combined with the
DEBOUNCE flag using the bitwise OR operator; for example,
RISING | DEBOUNCE. If the DEBOUNCE flag is set, the input must
return to the inactive state (low, for rising edge, high for falling edge)
at least one video field before another trigger will be detected. This is
useful for preventing switch bounce and other noise sources from be
detected as trigger signals. You can’t use the DEBOUNCE flag alone
must be used in combination with RISING or FALLING.

SetTriggerType() waits for the frame grabber to finish processing any
queued operations before executing.

See Also GrabTriggered, GetTriggerType

Value Description

LOW Trigger occurs whenever the trigger input is near 0 volt

HIGH Trigger occurs whenever the trigger input is near 5 volt

RISING Trigger occurs whenever the input goes from low to hig

FALLING Trigger occurs whenever the input goes from high to low

DEBOUNCE Input must return to the inactive state (low, for rising edg
high for falling edge) for at least one video field before
another trigger will be detected.
114

Chapter 5 Function Reference

F
unction

R
eference

,

pect

e

d

N
d

px510.bk : 16_lib.fm Page 115 Friday, September 12, 1997 9:38 AM
SetVideoFormat

Syntax int SetVideoFormat(FGHANDLE fgh, int field_length, int blank_length
int flags);

Return Value Non-zero if successful.
0 on failure.

Description Specifies the synchronization mode and tells the frame grabber to ex
a specific number of lines of vertical blank (blank_length), followed by a
specific number of lines of valid video (field_length).

The flags parameter specifies the synchronization mode. The possibl
values of flags are:

Value Description

AUTOMATIC_SYNC Default. The board automatically detects the
video format (NTSC or CCIR/PAL) and syn-
chronizes to the incoming video signal.
field_length and blank_length are ignored.

INTERNAL_SYNC The board generates its own video timing an
ignores sync information in the incoming
video signal. With this mode, you can use the
board’s sync drive signals to synchronize the
video source with the board.

USER_SYNC The video timing is entirely specified by the
video_length and blank_length. Even fields
have vertical blanks of length blank_length;
odd fields have vertical blanks of length
blank_length + 1.

WEN_SYNC The board synchronizes vertically to the WE
signal received on the trigger input. The boar
still uses the horizontal sync in the incoming
video signal.
 115

Imagenation

 sub-

.

r-

C

px510.bk : 16_lib.fm Page 116 Friday, September 12, 1997 9:38 AM
Valid values for blank_length depend on the sync mode:

Valid values for field_length are:

When you need to change the video format and the image size for a
sequent capture, always call SetVideoFormat() first, and then call
SetImageSize() (or SetFieldSize()) before capturing the image.

SINGLE_FIELD_SYNC (PX610 only) The board treats every field of
video received as if it were field 0. You’ll typi-
cally use this mode with non-interlaced video

This flag must be combined with one of the
flags WEN_SYNC, INTERNAL_SYNC, or
USER_SYNC using the bitwise OR operator.
When combined with the INTERNAL_SYNC
flag, the frame grabber generates timing inte
nally as if each field is field 0, and this timing
is reflected in the behavior of the sync drive
signals.

Sync Mode Range for blank_length

USER_SYNC and
INTERNAL_SYNC

14≤ blank_length≤ 256

WEN_SYNC 1≤ blank_length≤ 256

Frame Grabber Range for field_length

PX510 1≤ field_length≤ 288,
(288 is the length of a standard CCIR/PAL
video field and is longer than a standard NTS
video field.)

PX610 1≤ field_length≤ 32,767

Value Description
116

Chapter 5 Function Reference

F
unction

R
eference

y

rth

-

n,
ill

s
is, a
ion,

px510.bk : 16_lib.fm Page 117 Friday, September 12, 1997 9:38 AM
SetVideoFormat() waits for the frame grabber to finish processing an
queued operations before executing.

For more information, see Grabbing Images with Non-Standard Video
Formats, on page 52.

See Also GetFieldLength, GetSyncType

VideoType

Syntax int VideoType(FGHANDLE fgh);

Return Value 0 No video.
1 NTSC video.
2 CCIR/PAL video.
3 Other.

Description Returns the type of video signal connected to the frame grabber: No
American NTSC format, European CCIR/PAL format, or other.

Wait

Syntax int Wait(FGHANDLE fgh, int flags);

Return Value Non-zero if successful.
0 on failure.

Description Waits for the end of the next field, the end of the next frame (two com
plete fields), or the end of a specific field, depending on the flags you
specify. The default behavior when flags= 0 is to wait for two complete
fields.

If the Wait() function is QUEUED, it does not pause program executio
but any QUEUED functions that are called immediately afterwards w
not execute until the Wait() is finished.

A useful rule for understanding the Wait() function is that it always ha
the same timing as a Grab() function called with the same flags; that
Wait() takes the same time to execute as the equivalent Grab() funct
but doesn’t collect any image data during that time.
 117

Imagenation

a-

ion in

rma-

he
 of
 on
s
.

px510.bk : 16_lib.fm Page 118 Friday, September 12, 1997 9:38 AM
The parameter flags is a set of flag bits that can specify modes of oper
tion for this function. If flags is 0, the default modes will be used. See
Using Flags with Function Calls, on page 70.

See Also WaitVB

WaitFinished Windows NT only

Syntax int WaitFinished(int handle);

Return Value 1 if successful.
0 on failure.

Description Releases the processor to execute other tasks until a specific operat
the queue has finished. You identify an operation in the queue by thehan-
dle returned by the function that queued the operation. For more info
tion, see Programming in a Multithreaded, Multitasking Environment, on
page 41 and Queue Structure under Windows NT, on page 67.

See Also IsFinished

WaitVB

Syntax int WaitVB(FGHANDLE fgh);

Return Value Non-zero if successful.
0 on failure.

Description Waits until the end of the next vertical blank. WaitVB() returns when t
interrupt routine has completed; this is usually close to the beginning
vertical blank, but can be at any time during vertical blank depending
system loading. WaitVB() returns too late for frame grabbing function
called immediately afterwards to capture the field that has just begun

See Also Wait
118

Chapter 5 Function Reference

F
unction

R
eference

.

e

px510.bk : 16_lib.fm Page 119 Friday, September 12, 1997 9:38 AM
WriteBin

Syntax int WriteBin(FRAMEHANDLE frh, char *fname, int overwrite);

Return Value The return values are:

Description Writes the image in frame buffer frh to the file fname. No information
about the image (height, width, and bits per pixel) is written, only the
pixel values. If fname already exists and overwrite is zero, the function
returns an error; otherwise, the contents of fname are overwritten.
WriteBin() opens and closes the file fname.

When calling this function from a Windows program, the type of fname
should be LPSTR rather than char *.

See Also ReadBin

Return Value Description

SUCCESS The file was written successfully.

FILE_EXISTS The file already exists, but the function call did
not specify that the file should be overwritten.

FILE_OPEN_ERROR The file could not be opened.

BAD_WRITE An error occurred while a file was being written

INVALID_FRAME The frame handle is invalid, or the frame’s imag
data has no logical address.
 119

Imagenation

.

e

px510.bk : 16_lib.fm Page 120 Friday, September 12, 1997 9:38 AM
WriteBMP

Syntax int WriteBMP(FRAMEHANDLE frh, char *fname, int overwrite);

Return Value The return values are:

Description Writes the image stored in frame buffer frh to the file fname in the BMP
format. If fname already exists and overwrite is zero, the function returns
an error; otherwise, the contents of fname are overwritten. WriteBMP()
opens and closes the file fname.

When calling this function from a Windows program, the type of fname
should be LPSTR rather than char *.

See Also ReadBMP

Return Value Description

SUCCESS The file was written successfully.

FILE_EXISTS The file already exists, but the function call did
not specify that the file should be overwritten.

FILE_OPEN_ERROR The file could not be opened.

BAD_WRITE An error occurred while a file was being written

INVALID_FRAME The frame handle is invalid, or the frame’s imag
data has no logical address.

WRONG_BITS The number of bits in the specified frame is
not 8.
120

V
E

S
A

M
E

N
U

Library

enu-
 the

px510.bk : VESAMENU.FM Page 121 Friday, September 12, 1997 9:38 AM
VESAMENU Library 6

The VESAMENU library is a DOS-based VGA display and menu
builder. The library makes it easy to create and display a graphics m
based interface for a program. Imagenation used this library to create
interface for PCIVU and for most of the DOS sample programs.

This library is written in C and comes in several versions:

vmenu_lb.lib. Turbo, version 3.0 and later and Borland, version 3.1
and later.

vmenu_lm.lib. Microsoft, version 6.0 and later.

vmenu_fw.lib. Watcom DOS/4GW version 10.6 and later.

The library provides functions for the following purposes:

• Entering, configuring, and exiting graphics mode
• Text display and configuration
• Menu creation, configuration, display, and manipulation
• Bit-mapped image display
• Editing text strings

6

 121

Imagenation

05

e
c-

y

fig-

by

px510.bk : VESAMENU.FM Page 122 Friday, September 12, 1997 9:38 AM
In order to use this VESAMENU library, your video card and monitor
must be VESA-compatible and capable of supporting VESA mode 1
hex, which is a 1024x768, 8-bit (256-color) mode.

Initializing and Exiting the Library

Before you call any other VESAMENU functions, you must call
vg_init_graph(). This function saves the current display mode, sets th
display to VESA mode 105 hex, and initializes some global data stru
tures.

vg_exit_graph() resets the display mode to the mode that was active
before the call to vg_init_graph(). A program must not call
vg_exit_graph() until after all other VESAMENU functions have been
called.

If your program calls vg_init_graph() more than once before calling
vg_exit_graph(), vg_exit_graph() will not be able to restore the displa
mode that was active before the first call of vg_init_graph().

VGA Text and Image Display

The basic functions this library provides for displaying text are
vg_gotoxy(), which places an invisible cursor at the specified screen
location, and vg_print() , which displays a string at the cursor location.
The text font, foreground color, background color, and size are all con
urable. All text and images use the same display palette, as defined
vga_set_palette().
122

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

ider

ow

me
-

ntly,

at

ach

dis-

s in
n

ed
s
hich

px510.bk : VESAMENU.FM Page 123 Friday, September 12, 1997 9:38 AM
The library provides four different graphics operations:

• draw_image()—display a bitmap
• draw_scaled_image()—display a scaled bitmap
• draw_rectangle()—draw a rectangle
• fill_rectangle()—draw a filled rectangle

The bitmaps are assumed to have one byte per pixel, and to be no w
than 1,024 pixels and no taller than 768 pixels.

In normal operation, a VGA card is addressed through a 64 KB wind
located at memory segment 0xA000. To access different parts of the
VGA memory, pages must be swapped in and out of that window. (So
VGA cards have a special flat addressing mode in which the entire mem
ory is addressed without paging. However, each card does this differe
so the library uses the normal addressing mode.) The vg_gotoxy() func-
tion automatically sets the page to that portion of the VGA memory th
is closest to the specified location. The vg_print() function and the
graphics functions automatically increment the page when they appro
a page boundary.

Menu Creation, Configuration, and Display

A menu is a data structure whose contents can be manipulated and
played using the menu_select() and menu_display() functions. All
menus must be successfully initialized by the menu_generate() function
before they are referenced by any other function; however, some field
the menu and menuitem structures must be initialized by the applicatio
before menu_generate() is called. For more information, see Menu Struc-
ture, on page 125 and menu_generate, on page 135.

The menu_select() function is used to change the currently highlight
menu option. Its return value indicates which (if any) menu option ha
been selected. This return value can be used, for example, to select w
of a variety of functions should be executed.
 123

Imagenation

al-
s of

-

px510.bk : VESAMENU.FM Page 124 Friday, September 12, 1997 9:38 AM
Menu Structures and Types

Colors Structure

struct colors
extern struct tagcolors
{

unsigned char standard, standardbk;
unsigned char high, highbk;
unsigned char menu, menubk;
unsigned char help, helpbk;

} colors;

This structure defines the foreground and background colors (VGA p
ette indices) used by the menu functions to display the different type
text:

• menu and menubk colors are used to display non-highlighted menu
options.

• high and highbk colors are used to display the highlighted menu
options.

• help and helpbk colors are used to display the single-line help mes
sages at the bottom of the screen.

• standard and standardbk colors are used to display all other menu
functions.
124

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

e

by

e a

is

px510.bk : VESAMENU.FM Page 125 Friday, September 12, 1997 9:38 AM
Menu Structure

struct menu
typedef struct tagmenu
{

int xmin, ymin, dx, dy; /* Screen location and size */
int rows, cols; /* Display configuration of

items */
int numitems; /* Number of items */
char *title; /* Title (displayed at top of

menu)*/
int highlight; /* Currently selected item */
menuitem *data; /* Pointer to menu items */

} menu;

This structure defines a menu. All of these values must be initialized
before menu_generate() is called unless otherwise specified:

• (xmin, ymin) defines the upper left-hand corner on the screen wher
the menu will be drawn

• (dx, dy) defines its height and width.

• rows and cols define the number of rows and columns in which the
menu items will be organized and displayed; these values are set
the menu_generate() function.

• numitems defines the number of items in the menu.

• *title points to the title, if any, of the menu; a menu that doesn’t hav
title must initialize this pointer to NULL.

• highlight defines which of the menu items is currently selected; if th
value is not initialized, it will be set to 0 (the first item) by
menu_generate().

• *data points to the menuitem structures below, and is usually set to
point to an array.
 125

Imagenation

zed

u's

lay;

f no

he
g of

px510.bk : VESAMENU.FM Page 126 Friday, September 12, 1997 9:38 AM
Menuitem Structure

struct menuitem
typedef struct tagmenuitem
{

int xoff, yoff;/* Screen, location, relative to menu */
int i, j; /* Position in menu (row, column) */
char *text; /* Menu text string */
int hotkey; /* Optional specifier for a hotkey;

0 indicates none */
char *help; /* Help message string */

} menuitem;

This structure defines a menu item. All of these values must be initiali
before calling menu_generate() on the associated menu, unless other-
wise specified:

• (xoff, yoff) defines the item's display coordinates relative to the men
upper left-hand corner; these values are set by menu_generate().

• (i, j) defines the item's (row, column) coordinates in the menu disp
these values are set by menu_generate().

• *text points to the text string in the menu that describes this item.

• hotkey defines a hotkey that can be used to select this menu item. I
hotkey is desired, set this field to 0.

• *help defines the text string that will be displayed at the bottom of t
screen when this item is selected; it should describe the functionin
this item.
126

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

px510.bk : VESAMENU.FM Page 127 Friday, September 12, 1997 9:38 AM
Function Reference

VESA and VGA Functions

vg_exit_graph

Syntax void vg_exit_graph(void);

Return Value None.

Description Resets the VESA display to the mode it was in just before
vg_init_graph() was called. A program must not call vg_exit_graph()
until after all other VESAMENU functions have been called.

See Also vg_init_graph

vg_init_graph

Syntax char *vg_init_graph(void);

Return Value A pointer to an error message.
NULL if graphics mode was enabled successfully.

Description This function does the following:

• Saves the current display mode for later restoration

• Sets the display mode to VESA mode 105 hex (1024x768,
256-colors)

• Sets up a 64 gray-scale VGA palette

• Initializes the font type and size to an 8x16 font, standard size

• Initializes the colors structure

It must be called before any other VESAMENU library function.

See Also vg_exit_graph, vga_set_palette
 127

Imagenation

h of
tion
,
6,
ang-
e to

is

px510.bk : VESAMENU.FM Page 128 Friday, September 12, 1997 9:38 AM
vga_set_palette

Syntax void vga_set_palette(unsigned char far palette[256*3]);

Input Values An array containing 256 byte triplets in the format: red value, green
value, blue value.

Return Value None.

Description When the frame grabber displays an image on the VGA monitor, eac
the 256 grayscale values is mapped to a VGA palette value. This func
allows the application to specify the VGA palette. The default palette
specified by vg_init_graph(), has 64 grayscale values, rather than 25
because there can be no more than 64 values of any given color. Ch
ing the VGA palette shouldn’t normally be necessary, but can be don
create false-color displays.

See Also vg_init_graph

vga_wait_vb

Syntax void vga_wait_vb(void);

Return Value None.

Description Waits until the beginning of the VGA display's vertical blank period. Th
function is useful for forcing graphics displays to synchronize to the
VGA monitor.

VESA Text Functions

vg_getbkcolor

Syntax int vg_getbkcolor(void);

Return Value 0-255 The current VGA text display background color.
-1 Background is transparent.
128

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

k-

 to
ith

px510.bk : VESAMENU.FM Page 129 Friday, September 12, 1997 9:38 AM
Description Returns the palette index of the color vg_print() uses for the text bac
ground. A value of -1 indicates that vg_print() will not draw a back-
ground around the text.

See Also vg_setbkcolor, vg_print

vg_getcolor

Syntax int vg_getcolor(void);

Return Value 0-255 The current VGA text display foreground color.

Description Returns the palette index of the color vg_print() uses to draw text.

See Also vg_setcolor, vg_print

vg_gotoxy

Syntax unsigned char far *vg_gotoxy(int x, int y);

Return Value A pointer to the screen location specified by (x, y).

Description Places the invisible cursor at location (x,y) as specified in pixels. It sets
the VGA page such that the specified position is as close as possible
the top of the page without being above it, subject to the granularity w
which the page can be set. x and y are clipped to the ranges [0,
vg_maxx()] and [0, vg_maxy()] respectively.

Description The location of the cursor specifies where vg_print() will print.

See Also vg_maxx, vg_maxy, vg_print

vg_maxx

Syntax int vg_maxx(void);

Return Value The maximum x value in the currently active graphics mode.
 129

Imagenation

s
ore,

s
ore,

)

col-
ains

off

y

px510.bk : VESAMENU.FM Page 130 Friday, September 12, 1997 9:38 AM
Description This implementation of the VESAMENU library hardwires the graphic
mode to VESA mode 105 hex (a 1024x768, 256-color mode). Theref
the maximum x value is 1023.

See Also vg_maxy, vg_gotoxy

vg_maxy

Syntax int vg_maxy(void);

Return Value The maximum y value in the currently active graphics mode.

Description This implementation of the VESAMENU library hardwires the graphic
mode to VESA mode 105 hex (a 1024x768, 256-color mode). Theref
the maximum y value is 767.

See Also vg_maxx, vg_gotoxy

vg_print

Syntax void vg_print(char *st);

Return Value None.

Description Writes text to the screen at the cursor location specified by the most
recent call to vg_gotoxy() and in the colors specified by vg_setcolor(
and vg_setbkcolor(). This function does no string formatting; use the
standard library function sprintf() if you need to format the string.

When vg_print() finishes, the x cursor location is changed to the first
umn after the end of the displayed text, and the y cursor location rem
the same.

Caution
This function does not check to make sure that text won’t run
the right or bottom edges of the screen. If you tell vg_print() to
print text that is too wide or placed too low, the resulting displa
130

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

a-

 by

und.

px510.bk : VESAMENU.FM Page 131 Friday, September 12, 1997 9:38 AM
will probably be in unexpected places, and the final cursor loc
tion will not be accurate.

See Also vg_gotoxy, vg_setcolor, vg_setbkcolor

vg_resizefont

Syntax void vg_resizefont(int size);

Return Value None.

Description Sets the scale factor for text drawn by vg_print(). Text can be scaled
any integer >= 1. The parameter size sets the scale factor, which is 1 by
default.

See Also vg_setfont, vg_print

vg_setbkcolor

Syntax void vg_setbkcolor(int color);

Return Value None.

Description Sets the palette index of the color vg_print() uses for the text backgro
If color is -1, vg_print() will not draw a background around the text.

See Also vg_getbkcolor, vg_setcolor, vg_print

vg_setcolor

Syntax void vg_setcolor(int color);

Return Value None.

Description Sets the palette index of the color vg_print() uses to draw text.

See Also vg_getcolor, vg_setbkcolor, vg_print
 131

Imagenation

,
e

.

e

px510.bk : VESAMENU.FM Page 132 Friday, September 12, 1997 9:38 AM
vg_setfont

Syntax int vg_setfont(int font);

Return Value Non-zero on success.
0 on failure.

Description Sets the font used by vg_print(). There are three fonts available: 8x8
8x14, and 8x16. The fonts are numbered 1, 2, and 3 respectively. Th
default (set by vg_init_graph()) is the 8x16 font.

vg_setfont() doesn’t affect the font scale factor set by vg_resizefont()
This function will fail if it is passed any number other than 1, 2, or 3.

See Also vg_print, vg_init_graph, vg_resizefont

vg_sizex

Syntax int vg_sizex(void);

Return Value The width of a text character as printed by vg_print().

Description Returns the width in pixels of a text character, taking into account the
font scale factor as set by vg_resizefont().

See Also vg_sizey

vg_sizey

Syntax int vg_sizey(void);

Return Value The height of a text character as printed by vg_print().

Description Returns the height in pixels of a text character, taking into account th
font scale factor as set by vg_resizefont().

See Also vg_sizex
132

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

the

ert,
s.
es
.

px510.bk : VESAMENU.FM Page 133 Friday, September 12, 1997 9:38 AM
vg_wherex

Syntax int vg_wherex(void);

Return Value The horizontal position of the cursor used by vg_print().

Description Returns the horizontal position, in pixels, of the cursor as set by
vg_gotoxy().

See Also vg_gotoxy, vg_print

vg_wherey

Syntax int vg_wherey(void);

Return Value The vertical position of the cursor used by vg_print().

Description Returns the vertical position, in pixels, of the cursor as set by
vg_gotoxy().

See Also vg_gotoxy, vg_print

Menu Functions

get_key

Syntax int get_key(void);

Return Value The scan code of the key hit.

Description Waits for a key to be depressed, and then returns the scan code for
key. This library has definitions for the following non-standard ASCII
keys and key combinations: the arrow keys, page up, page down, ins
delete, home, end, the function keys, and CONTROL + the arrow key
The definitions are listed in VMENU.H. The menu_select() function us
some of these special keys, so it should take its input from get_key()

See Also menu_select
 133

Imagenation

text

u is to

or
ted

px510.bk : VESAMENU.FM Page 134 Friday, September 12, 1997 9:38 AM
menu_calc_dx

Syntax int menu_calc_dx(menu *m, int columns);

Return Value The calculated menu width.

Description Calculates the width in pixels that the menu m should be if its items are
arranged in a number of columns equal to columns. This calculation is
based on the width of each menu item and the width in pixels of the
(as defined by vg_setfont() and vg_resizefont()).

See Also menu_calc_dy, menu_generate

menu_calc_dy

Syntax int menu_calc_dy(menu *m, int columns);

Return Value The calculated menu height.

Description Calculates the height in pixels that the menu m should be if its items are
arranged in a number of columns equal to columns. This calculation is
based on the number of items and the height in pixels of the text (as
defined by vg_setfont() and vg_resizefont()).

See Also menu_calc_dx, menu_generate, struct menu

menu_display

Syntax void menu_display(menu *m);

Return Value None.

Description Displays menu m on the VGA screen at the location specified by the x
and y values in the menu structure. It erases the area where the men
be drawn, draws a rectangle to frame the menu, displays the menu
options and title, displays (at the bottom of the screen) the help text f
the currently selected menu option, and highlights the currently selec
menu option.

See Also menu_erase, struct menu
134

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

e

ust

he
he
enu

ters,
rows

r-

px510.bk : VESAMENU.FM Page 135 Friday, September 12, 1997 9:38 AM
menu_erase

Syntax void menu_erase(menu *m);

Return Value None.

Description Erases the menu m from the VGA display by calling
fill_rectangle(menu->xmin, menu->ymin, menu->dx, menu->dy,
colors.standardbk). It does not check, before erasing this area, to se
whether the menu was actually displayed on the VGA monitor.

See Also menu_display, struct colors, struct menu

menu_generate

Syntax int menu_generate(menu *m);

Return Value Return values are:

Description Sets up some internal data in menu m required by the menu functions. In
order for it to function properly, several items in the menu structure m
be initialized before menu_generate() is called: xmin, ymin, dx, dy,
numitems, *data, and *title. (*title may be initialized to NULL if you
don't want your menu to have a title, but it can’t be left uninitialized.) T
menu_generate() function assumes that all menu item names have t
same number of characters. It calculates the number of rows in the m
display based on the height of the menu and of the individual charac
and then calculates the number of columns based on the number of

Return Value Description

0 Menu successfully initialized.

MENU_BOUNDS_ERR Menu screen coordinates off screen or othe
wise invalid.

MENU_WIDTH_ERR Menu not wide enough to hold a menu item.

MENU_HEIGHT_ERR Menu not tall enough for specified width and
number of menu items.
 135

Imagenation

r

tem

enu

rrors

put,
N
ial

.

px510.bk : VESAMENU.FM Page 136 Friday, September 12, 1997 9:38 AM
and the number of items. The menu_generate() function will fail unde
the following circumstances:

• The menu coordinates are off-screen.

• The menu is too wide to fit on the screen with the given origin.

• The menu is not wide enough, based on the width of each menu i
name and the number of columns.

• The menu is not tall enough, based on the width in pixels of the m
and the number of menu items.

The return value of menu_generate() should always be checked for e
before menu m is used with any other VESAMENU function.

See Also struct menu

menu_select

Syntax int menu_select(menu *m, int key);

Return Value Return values are:

Description Changes the highlighted menu option depending on the key that is in
or returns the index of the highlighted menu item if the key is RETUR
or a defined hotkey for that menu item. The following keys have spec
meaning to menu_select():

• Left and Right Arrows—move selection left or right by one column

• Up and Down Arrows—move selection up or down by one row.

• PAGE UP and PAGE DOWN—move selection to top or bottom of
current column.

Return Value Description

-1 No selection made.

0 to m->numitems - 1 Index of selected menu item.
136

Chapter 6 VESAMENU Library

V
E

S
A

M
E

N
U

Library

px510.bk : VESAMENU.FM Page 137 Friday, September 12, 1997 9:38 AM
• HOME and END—move selection to first or last menu item.

See Also get_key

Graphics Functions

fill_rectangle

Syntax void fill_rectangle(int xmin, int ymin, int dx, int dy, int color);

Return Value None.

Description Draws a color filled rectangle on the VGA display at location (xmin,
ymin). The rectangle is dx pixels wide and dy pixels tall.

See Also draw_rectangle

draw_rectangle

Syntax void draw_rectangle(int xmin, int ymin, int dx, int dy, int color);

Return Value None.

Description Draws an unfilled color rectangle on the VGA display at location (xmin,
ymin). The rectangle is dx pixels wide and dy pixels tall.

See Also fill_rectangle

draw_image

Syntax void draw_image(unsigned char huge *buf, int xmin, int ymin, int dx,
int dy);

Return Value None.

Description Copies the information in buf to the VGA display at location (xmin,
ymin), assuming that buf contains an image that is dx pixels wide by dy
pixels tall.

See Also draw_scaled_image
 137

Imagenation

es

.

a-
n.

ht

px510.bk : VESAMENU.FM Page 138 Friday, September 12, 1997 9:38 AM
draw_scaled_image

Syntax void draw_scaled_image(unsigned char huge *buf, int dx1, int dy1,
int xmin, int ymin, int dx2, int dy2);

Return Value None.

Description Copies the information in buf to the VGA display at location (xmin,
ymin), assuming that buf contains an image that is dx1 pixels wide by dy1
pixels tall. The image will be scaled in the x direction by a factor of dx2/
dx1, and in the y direction by a factor of dy2/dy1, so the resultant image
will be dx2 pixels wide and dy2 pixels tall.

See Also draw_image

Editing Functions

edit

Syntax int edit(int inserting, int len, char *prompt, char *start);

Return Value RET Changes to *start saved.
ESC Changes to *start not saved.

Description Provides an interface for editing a string at a prompt. It displays prompt at
the location of the cursor as placed by vg_gotoxy(), and modifies the
string according to keyboard input until RETURN or ESC is pressed.

If inserting is non-zero, edit() starts in insert mode; otherwise, edit()
starts in overstrike mode. After edit() is called, the INSERT key toggl
the mode.

len defines the maximum length of the editing buffer.

*prompt is an application-defined prompt string such as “File name: ”

*start is the string to be edited, which must be allocated by the applic
tion. It may have initial information in it, such as a default file extensio

The keys defined in edit() are BACKSPACE, DELETE, the left and rig
arrow keys, HOME, END, and the alphanumeric keys.
138

ary

rom

lly

px510.bk : FILEIT.FM Page 139 Friday, September 12, 1997 9:38 AM
The FILEIT File
Conversion Program 7

FILEIT is a stand-alone DOS program that converts Imagenation bin
image files to formatted files, or formatted files to binary image files.
FILEIT can be executed as a DOS command on the command line, f
a batch file, or in a DOS window in Microsoft Windows.

The routines in FILEIT that perform the graphics conversions were
adapted from the book Supercharged Bitmapped Graphics by Steve Rim-
mer. The source is included on a disk when you purchase the book.

The PX library can write either unformatted binary image files, typica
identified by a BIN extension, or Microsoft BMP formatted files.

FILEIT can convert between BIN files and files in any of the following
graphics formats:

7

File Extension Description

BMP Microsoft Windows 3.x Paintbrush bitmap format.

GIF CompuServe graphics interchange format.

PCX ZSoft format.

PIC PC Paint/Pictor format.

TGA Truevision Targa format.
 139

Imagenation

 or
u-
en

e

px510.bk : FILEIT.FM Page 140 Friday, September 12, 1997 9:38 AM
FILEIT expects to have a binary image file (BIN) as either the source
target file type or override, otherwise the type of conversion is ambig
ous. If the format of a file is properly identified by its file extension, th
an override parameter is not necessary.

The command line parser is not case-sensitive. Upper and lower cas
have the same meaning.

Syntax

fileit /option source.fil /ovrd target.fil /ovrd /w=n

/option can have the following values:

/ovrd is a file type override and can be any of the three-character file
extensions listed in the table above.

TIF Aldus tagged image file Format.

WPG WordPerfect metafile format.

File Extension Description

? Display syntax.

f Force overwrite of existing target file.

/w=n Width of the image, where n is the number of pixels.
Use this switch when converting source files in binary
image format, which don’t store information about the
width of the image. If the source file is not a BIN file,
this switch is not needed.
140

Chapter 7 The FILEIT File Conversion Program

e

n.
he

px510.bk : FILEIT.FM Page 141 Friday, September 12, 1997 9:38 AM
Examples

To convert a binary image file (f1) to a TIFF file (f2):

fileit f1 /bin f2 /tif

To convert a binary image file (f1) to a TIFF file (f2.tif):

fileit f1 /bin f2.tif

To convert a binary image file (f1.bin) to a TIFF file (f2.tif):

fileit f1.bin f2.tif

To convert a binary image file (f1.bin) to a TIFF file (f1.tif):

fileit f1.bin *.tif

To convert all binary image files (*.bin) to TIFF files (*.tif):

fileit *.bin *.tif

To convert a TIFF file (f2.tif) to a binary image (f1.bin), reverse the fil
names in any of the above examples:

fileit *.tif *.bin

If a target file exists, you will be asked whether you want it overwritte
Target files will not be automatically destroyed. However, if you want t
target files overwritten in all cases without any prompting, use the /f
(force overwrite) option, like this:

fileit /f *.tif *.bin
 141

Imagenation

nd
ec-
not

er-

rs
g
ct

ro-

px510.bk : FILEIT.FM Page 142 Friday, September 12, 1997 9:38 AM
Source and Target file specifications can include drives, directories, a
any wild cards that DOS recognizes in file specifications. Directory sp
ifications can be either relative or absolute. Directories and Drives can
contain wild cards.

Absolute directory specification:

c:\dir\file.ext

Relative directory specification:

..\dir\file.ext

Return Values

FILEIT returns an integer to the calling process, usually DOS, upon t
mination. Non-zero return values indicate a fatal error.

All errors that occur during command line parsing are fatal. Most erro
that occur during file processing are not fatal. Errors that occur durin
file conversion are fatal to the current conversion, but should not affe
subsequent conversions if multiple files have been specified with wild
cards. Non-fatal errors produce error messages, but don’t stop the p
cess.

The following errors are fatal and cause FILEIT to terminate:

Error
Number

Description

201 Too many or misplaced options or overrides.

202 Too many parameters on command line.

203 Invalid command option.

204 Invalid source override.
142

Chapter 7 The FILEIT File Conversion Program

’t
e they

ci-

.

ec-

ci-

f

px510.bk : FILEIT.FM Page 143 Friday, September 12, 1997 9:38 AM
The following errors are fatal to the current conversion only, and don
cause the process to terminate. These errors don’t return values sinc
don’t cause FILEIT to terminate:

• Error writing to output file. Wrong number of bytes written.
• Error reading from input file. Wrong number of bytes read.
• Cannot allocate enough memory. Remove some TSRs and try

again.
• Error writing palette structure to output file.
• Wrong number of bits. Bits per pixel should be 8.
• Unexpected End of File marker. File is too short.

205 Invalid target override.

206 Source file specification not found. No such file.

207 Drive and Directory specifications cannot contain wild
cards.

208 Missing source file specification. Source file must be spe
fied.

209 Missing target file specification or target file type override

210 Type of conversion is ambiguous. Source file type not sp
ified.

211 Type of conversion is ambiguous. Target file type not spe
fied.

212 Type of conversion is ambiguous. Target and source file
types are equal.

213 Type of conversion is ambiguous. Either target or source
must be BIN.

214 Cannot generate full path names. Check for existence o
directories.

Error
Number

Description
 143

Imagenation

ary

ion.

the

d

ot

di-

px510.bk : FILEIT.FM Page 144 Friday, September 12, 1997 9:38 AM
• Bits per pixel illegal for LZW compression. Cannot be greater
than 9.

• Cannot match source file size. May not be an Imagenation bin
file.

• Target and source file names are identical. Cannot do convers
• Cannot open target file.
• Cannot open source file.
• Unrecognized file type.
• File structure does not match command line specification.
• Conversion type is ambiguous.

Batch File Processing

When you run FILEIT from a DOS batch file, you should be aware of
following:

• To save the output of the run in a log file, the log file specification
must be part of the batch file, not just a parameter on the comman
line that executes the batch file.

• FILEIT asks questions about overwriting files. If the answers are n
provided to the batch file, the program will hang, and you’ll have to
reboot your computer.

In order to use batch files successfully, you’ll need to use the DOS re
rection operators:

Operator Description

> Erases a file before writing to it

>> Appends to a file

< Reads from a file
144

Chapter 7 The FILEIT File Conversion Program

ing

n
ec-

an

ES
n-
s:

from

px510.bk : FILEIT.FM Page 145 Friday, September 12, 1997 9:38 AM
Examples

The examples below illustrate the use of the redirection operators.

Example 1: Converts Z1 to Z1.BMP and directs the output to a log file
named LOG. If the file named LOG contains any data prior to execut
this batch file, it is erased.

fileit z1 /bin z1.bmp >log

Example 2: Converts Z1 to a BMP file and converts Y1 to a PCX file. O
the first line, the output is directed to a log file named LOG. On the s
ond line the output is appended to the same log file.

fileit z1 /bin z1.bmp >log
fileit y1 /bin y1.pcx >>log

In both examples 1 and 2, if FILEIT asks for permission to overwrite
existing file, it will hang, and you’ll need to reboot your computer. You
can solve this problem in one of two ways.

• Use the /f option to force overwriting and avoid the question.

fileit /f z1 /bin z1.bmp >log
fileit /f y1 /bin y1.pcx >>log

• Supply the answers in two separate files. Create a file called Y
that contains the letter “Y”, and create a file called NO that co
tains the letter “N”. Then rewrite the above batch file as follow

fileit z1 /bin z1.bmp <yes >log
fileit y1 /bin y1.pcx <no >>log

When FILEIT asks for permission to overwrite an existing file, it does
not wait for a response from the terminal, instead it takes the answer
the first line of the file name that follows the “<“ operator. All terminal
 145

Imagenation

 to
iles
P
g
g

 line.
ds
s
n-
 a

ny
 and

.
es.
ng
t
6-
X

px510.bk : FILEIT.FM Page 146 Friday, September 12, 1997 9:38 AM
output including the “yes” and “no” answers will be directed to the file
named LOG.

If the above command line included wild cards, then you would have
include a “yes” and “no” answer for each file. Suppose you have 10 f
beginning with the letter “Z”, and you want to convert all of them to BM
files using a batch file. You also want any existing BMP files beginnin
with a “Z” to be overwritten. Your batch file would contain the followin
line:

fileit z* /bin z*.bmp <yes >log

The file named YES would have to contain 10 Ys each on a separate
Each time FILEIT needs to ask for permission to overwrite a file, it rea
the next line of YES. The file named YES can always contain more Y
than are required, but no fewer Ys. If you know you’re going to be co
verting between 50 and 100 files at any given time, you could create
YES file with 200 Ys in it, and it would always be sufficient.

Notes on Format Conversions

FILEIT was not designed to read and write all variations of formatted
image files. Formatted files, such as PCX, BMP, and WPG, have ma
variations, and new ones are being created all the time. FILEIT reads
writes only a subset. The way FILEIT handles each of the formats is
described in the following sections.

BMP Files

BMP files are becoming a standard among Windows 3.x applications
The Windows implementation of ZSoft’s PC Paintbrush uses BMP fil
If you need to import an image file into a Windows application, try usi
FILEIT to convert the file to BMP format. The only problem you migh
encounter is that some Windows applications expect to operate on 1
color BMP files, like the ones distributed with Windows as wallpaper. P
146

Chapter 7 The FILEIT File Conversion Program

our
ions
s

t,
F
ble
at.

sh,
esk-

gth

-2-3
er
k

Win-

px510.bk : FILEIT.FM Page 147 Friday, September 12, 1997 9:38 AM
image files are 8-bit grey scale which is equivalent to 256-color, so y
application needs to be able to handle the 256-color palette. Convers
from BMP to binary only work for BMP files for images whose width i
divisible by four. If BMP files do not work well with your application, try
TIFF. Many word processors are capable of reading TIFF files.

GIF Files

FILEIT creates GIF 87a files. There is a newer, more complex forma
GIF 89a, that allows multiple images within a single file. However, GI
89a is less compatible with existing applications. An application capa
of reading GIF 89a format should be capable of reading GIF 87a form

PCX Files

The PCX format was developed by ZSoft as the native format for PC
Paintbrush for Windows 3.x. Because of the popularity of PC paintbru
PCX files have become standard among PC applications, including d
top publishing, drawing applications, and many others. The PCX files
produced by FILEIT are 8-bit files, and are compressed using runlen
encoding.

PIC Files

There are many applications that use PIC as a file extension. Lotus 1
uses it to denote graph files. Lotus PIC files are vector drawings rath
than bitmapped graphics. FILEIT will not convert a Lotus PIC file bac
to a binary file; it will give you an error message.

The PIC files created by FILEIT are PC Paint/Pictor format files. The
PIC format used by FILEIT was originally the proprietary format of PC
Paint 2.0. This format is not the same as ZSoft’s PC Paintbrush. The
dows 3.x implementation of ZSoft’s PC Paintbrush uses BMP files.
 147

Imagenation

d, a
y

to
te

exi-
a
ea-

ges
ill
eed
t.

px510.bk : FILEIT.FM Page 148 Friday, September 12, 1997 9:38 AM
TGA Files

The Targa format was originally created for the Truevision Targa boar
high-end video board for PCs. The format has since migrated to man
other applications. Although the Targa format was originally created
handle 24-bit color, the file that FILEIT produces is 8-bit, with a palet
and no image compression.

TIFF Files

The TIFF (Tagged Image File Format) file was designed to be very fl
ble so it’s quite complicated. There is more than a good chance that
given TIFF reader will not be able to read a given TIFF file. For that r
son, FILEIT produces a fairly simple TIFF file: an 8-bit file with no
image compression. The lack of compression seems to make the file
compatible with most applications. Many word processors are able to
read TIFF files.

WPG Files

WPG files are used by WordPerfect. They were intended for vector
images not bitmapped images, but they can also contain bitmapped
images. PX binary image files use 8-bit grey scale. The WPG format
allows 8-bit images, however, at present WordPerfect only reads ima
of four or fewer bits. If you use FILEIT to create a WPG file, the file w
be created properly, but WordPerfect won’t be able to read it. If you n
to import an image into a WordPerfect document, use the BMP forma
148

 not

e

o
t-
eo

n on

px510.bk : compat.fm Page 149 Friday, September 12, 1997 9:38 AM
PX500 Compatibility A

This appendix describes features of the PX510 and PX610 that were
available on the PX500, and changes in this version (2.0) of the PX
libraries for supporting these new features. You’ll find this information
useful if you want to upgrade a PX500-based system to use either th
new PX510/PX610 hardware, or the new version of the PX software
libraries, or both.

New Features in the PX510 and PX610

Non-Interlaced, Progressive-Scan Video Support

The PX500 and PX510 can capture images from video sources in tw
interlaced video formats: NTSC and CCIR/PAL. In addition to suppor
ing these interlaced formats, the PX610 can capture images from vid
sources that output non-interlaced video, which is the most common
video format used by progressive-scan cameras. For more informatio
non-interlaced, progressive-scan video, see Grabbing Images with Non-
Standard Video Formats, on page 52, and Video Format, on page 62.

A

 149

Imagenation

.
tally
r-

 out-
bil-

rity
be
-

m-

rab-
re
at

px510.bk : compat.fm Page 150 Friday, September 12, 1997 9:38 AM
Horizontal and Vertical Cropping and Scaling

The PX500 can scale images horizontally and crop images vertically
The new PX frame grabbers can crop and scale images both horizon
and vertically, and the scaling feature is more versatile. For more info
mation on cropping and scaling, see Scaling Images, on page 71 and
Cropping Images, on page 73.

Horizontal and Vertical Sync Drive Signals

The new PX frame grabbers have two sync lines that you can use to
put TTL-level synchronization signals. The PX500 did not have the a
ity to output sync signals. For more information, see Synchronization
Drive Signals, on page 60.

Programmable Strobe Lines

The PX500 has two output strobe lines, and you can control the pola
of the output signals. The new PX frame grabbers also have two stro
lines with polarity control, but on the new frame grabbers you can pro
gram the duration of the strobe periods, start the strobe output on co
mand or on receipt of a trigger signal, and fire all or only part of the
strobe cycle. For more information, see Strobes, on page 59.

Full-Size (768x576) CCIR/PAL Images

Resolution on the PX500 was limited to 640 x 512. The new frame g
bers have a maximum resolution of 768 x 576, allowing you to captu
the entire vertical range of a CCIR/PAL image with an aspect ratio th
results in square pixels in the captured image.
150

Appendix A PX500 Compatibility

tor.

four
the
und
the

t an
ec-
a-

at

ng
er-
h
used

px510.bk : compat.fm Page 151 Friday, September 12, 1997 9:38 AM
+12V Power Line

The new frame grabbers include a +12V output on the 26-pin connec
The PX500 did not offer a +12V output.

26-Pin D Connector

The PX500 used a 15-pin D connector to provide connections for the
video inputs, the strobe lines, and the trigger line. To accommodate
extra sync drive signals, the +12V output, and the accompanying gro
signals, the new frame grabbers use a 26-pin connector. Pinouts for
connector are listed in 26-pin D Connector, on page 156.

If you already have a 15-pin cable for use with the PX500, you can ge
adapter that allows you to use your 15-pin cable with the 26-pin conn
tors on the PX510 and PX610. For more information, contact Imagen
tion Technical Support (see Technical Support, on page 29).

Changes in the PX Libraries

This section describes changes in the PX libraries from version 1.x th
shipped with the PX500, to version 2.x that ships with the PX510 and
PX610.

New Strobe Functions

In version 1.x of the PX libraries, strobe control was limited to changi
the polarity of the strobe lines with the SetStrobePolarity() function. V
sion 2.0 includes the four additional functions listed below for use wit
the PX510 and PX610. None of these functions has any effect when
with the PX500.
 151

Imagenation

ff

 a
be

d

 on

f
.

px510.bk : compat.fm Page 152 Friday, September 12, 1997 9:38 AM
FireStrobe()—Initiates part or all of the strobe sequence, or turns o
all strobe activity.

GetStrobeState()—Tells whether the strobes are disabled, whether
strobe sequence is in progress, and the current state of each stro
line.

SetStrobePeriods()—Controls the length of the two strobe pulses an
the gap that separates the pulses.

SetStrobeType()—Sets the strobe to be initiated by either the
FireStrobe() function or by an incoming trigger signal. Can also be
used to disable the strobe lines. The strobe lines must be enabled
the PX510 and PX610 before the polarities can be changed.

For more information on using these strobe functions, see Strobes, on
page 59, and the function reference pages in Chapter 4, Programming
PX Frame Grabbers, on page 35.

New Sync Drive Signal Functions

Version 2.0 of the PX library includes two new functions for control o
the sync drive signal lines that were added on the PX510 and PX610
Calls to these functions will fail when used with the PX500.

SetDrivePolarity()—Controls the signal polarity of the sync signal
lines.

SetDriveType()—Enables or disables both sync signal lines.

New Video Format Functions

Version 2.0 of the PX library includes three new functions for working
with non-standard video signals.
152

Appendix A PX500 Compatibility

0

)

On
nly

-
.

ts
10/

spe-

of

d

px510.bk : compat.fm Page 153 Friday, September 12, 1997 9:38 AM
GetFieldLength()—Returns the field length of the last video field,
including vertical blank. GetFieldLength() works with both the PX50
and the PX510/PX610.

GetSyncType()—Returns the currently selected synchronization
mode, as set by SetVideoFormat(). On the PX500, GetSyncType(
always returns AUTOMATIC_SYNC as the mode.

SetVideoFormat()—Specifies the synchronization mode for the
frame grabber and the length of the video field and vertical blank.
the PX500, SetVideoFormat() can set the synchronization mode o
to AUTOMATIC_SYNC.

Other New Functions

Version 2.0 of the PX libraries also contains these two additional func
tions, both of which work with either the PX500 or the PX510/PX610

ReadConfiguration()—Returns information about the configuration
of the board, including whether video cache RAM is installed,
whether the form factor is PC/104 Plus, whether the board suppor
non-interlaced video, and whether the board is a PX500 or a PX5
PX610.

SetFieldSize()—Like SetImageSize(), SetFieldSize() specifies the
scaling and cropping of the captured image, but SetFieldSize() is
cifically designed for single-field captures.

Changes to Existing Version 1.x Functions

Version 2.0 of the libraries contains several changes in the behavior
functions that were implemented in the Version 1.x libraries:

Grab(), GrabContinuous(), and GrabTriggered()—In Version 1.x
of the PX libraries, you could only capture an image to the onboar
 153

Imagenation

ed()

d()
 to

n

that

-

px510.bk : compat.fm Page 154 Friday, September 12, 1997 9:38 AM
video cache RAM by using the GrabToCache() and CacheTrigger
functions. In addition, the Version 2.0 libraries let you use the new
CACHE flag with the Grab(), GrabContinuous(), and GrabTriggere
functions to simultaneously capture an image to both a frame and
the onboard cache.

HaveCache()—In Version 1.x of the PX libraries, the HaveCache()
function simply indicated whether video cache RAM was present o
the board. In the Version 2.0 libraries, HaveCache() returns the
amount of cache installed, in terms of the number of lines of video
can be stored.

VideoType()—In Version 2.0 of the PX libraries, VideoType() can
return “other” for video type, in addition to the two video types sup
ported in Version 1.x: NTSC and CCIR/PAL.
154

for

m-
ng

ut,

e

px510.bk : CONNECT.FM Page 155 Friday, September 12, 1997 9:38 AM
Cables and
Connectors B

This chapter includes information on purchasing and making cables
the PX family of frame grabbers.

Standard PCI Bus and CompactPCI Bus Cables

Imagenation offers pre-wired cables for the standard PCI-bus and Co
pactPCI-bus configurations of the PX510 and PX610. The cables bri
the 26-pin D connector out to nine BNC connectors for the four video
inputs, the sync drive outputs, the strobe outputs, and the trigger inp
plus a tenth wire for the +12 Volts DC.

You can also make your own cables using the pinout information in th
next section.

B

 155

Imagenation

wn

ver-

px510.bk : CONNECT.FM Page 156 Friday, September 12, 1997 9:38 AM
26-pin D Connector

Pinouts for the 26-pin D connector on the PX510 and PX610 are sho
below:

Pin Description Pin Description

1 Video 0 14 Ground*

2 Video 1 15 Trigger/WEN

3 Video 2 16 Reserved

4 Video 3 17 Reserved

5 Reserved 18 Reserved

6 Horizontal Drive 19 Reserved

7 Vertical Drive 20 Reserved

8 Ground* 21 Reserved

9 +12 V DC 22 Reserved

10 Ground (Video 0) 23 Strobe 0

11 Ground (Video 1) 24 Strobe 1

12 Ground (Video 2) 25 Reserved

13 Ground (Video 30) 26 Reserved

* Grounds on pins 8 and 14 are for all digital signals: horizontal and
tical drive, strobes 0 and 1, and trigger/WEN.

Pin 9 Pin 1

Pin 26 Pin 19

Pin 18 Pin 10
156

Appendix B Cables and Connectors

the
type

t an
ec-
a-

.

px510.bk : CONNECT.FM Page 157 Friday, September 12, 1997 9:38 AM
Connecting the +12V Output

To activate the +12V output on pin 9, you must connect the board to
computer’s power supply. You make this connection using the same
of connectors used to power the disk drives.

26-Pin to 15-Pin Adapter for PX500 Cables

If you already have a 15-pin cable for use with the PX500, you can ge
adapter that allows you to use your 15-pin cable with the 26-pin conn
tors on the PX510 and PX610. For more information, contact Imagen
tion Technical Support (see Technical Support, on page 29).

PC/104-Plus Cables

Connector J5 on the PC/104-Plus configuration is a 20-pin IDC male
connector with the following pinouts:

The ground pin for each signal is shown on the same line in the table

Pin Description Pin Description

1 Ground 2 Video In 0

3 Ground 4 Video In 1

5 Ground 6 Video In 2

7 Ground 8 Video In 3

9 Ground 10 Vertical Drive

11 Ground 12 Horizontal Drive

13 Ground 14 Strobe 0

15 Ground 16 Strobe 1

17 Ground 18 Trigger/WEN

19 Ground 20 +12 Volts
 157

Imagenation

px510.bk : CONNECT.FM Page 158 Friday, September 12, 1997 9:38 AM
158

.

.

px510.bk : Specs.fm Page 159 Friday, September 12, 1997 9:38 AM
Hardware
Specifications C

This appendix lists specifications for the PX510 and PX610 hardware

C
Input composite video
format

Monochrome, RS-170 (NTSC) or
CCIR/PAL with auto-detect.
Non-interlaced formats typical of pro-
gressive-scan cameras (PX610 only).

Input video signal 1 V peak-to-peak, 75 Ohm. Diode
clamped to ±1.2 V.

Resolution RS-170: 640 x 480 pixels
(maximum: 768 x 486 pixels).

CCIR/PAL: 768 x 576 pixels.
256 gray levels (8 bits).

Sampling jitter Maximum of ±3 ns relative to horizontal
synchronization.

Capture time Real-time video capture.
RS-170 (NTSC): 1/30 second per frame
CCIR/PAL: 1/25 second per frame.

Look-up tables (LUTs) Software-programmable, 256-byte
input LUT.
 159

Imagenation

px510.bk : Specs.fm Page 160 Friday, September 12, 1997 9:38 AM
External trigger Input pulled up by 10 KOhm to 5 V.
Trigger requires a TTL pulse of 100 ns
minimum. Software programmable edge
or level sensitivity and polarity.

Strobe output Two TTL outputs with independently-
programmable pulse widths and polari-
ties to control resettable cameras, expo-
sure time, strobe lights, etc.

Over-voltage protection All inputs and outputs are diode pro-
tected.

Form factor PCI short card: 174.6 x 106.7 mm
6.875 x 4.2 in.

PC/104 Plus module: 91.4 x 96.5 mm
3.4 x 3.6 in.

CompactPCI module: 100 x 160 mm
3.94 x 6.3 in.

Video noise ≤ 0.7 LSB (least significant bit).

Power +5 VDC, 650 mA.

Camera power +12 VDC output, 1.5 A maximum,
fused.

Video multiplexer Four video inputs which can be a mix of
RS-170 (NTSC) and CCIR/PAL.

Camera genlocking Horizontal and vertical drive outputs to
genlock camera with frame grabber.

File formats Binary conversion program allows cre-
ation of BMP, TIFF, GIF, PIC, PCX,
TGA, and WPG files.

Operating temperature 0° C to 60° C.

Warranty One-year limited parts and labor.
160

px510.bk : BRDDIAG.FM Page 161 Friday, September 12, 1997 9:38 AM
Block Diagram D

A block diagram of the PX board is shown on the following page.

D

 161

Imagenation

px510.bk : BRDDIAG.FM Page 162 Friday, September 12, 1997 9:38 AM
4 to 1
MUX

Offset
& Gain

Input
LUTADC

4.2 MHz
Nyquest

Filter

Pixel Clock
Phase

Synchronizer

Video
Sync

Separator

CCIR/PAL or
NTSC Format
Detector and
Autoswitch

Crystal
Oscillator

Time
Reference

Status Port

PCI Interface

Dump
Cache

Load
Cache

Optional
Cache

Input 0

Input 1

Input 2

Input 3

Video Data

Control Bus

Pixel
Comparator

Control Bus

Control
Input/
Output

Strobe 0
Strobe 1

H Sync
V Sync

Trigger/WEN

12.166 MHz
14.600 MHz Cropping

Scaling
162

eo,
 with
rate
n the

r to

.

es

OS

px510.bk : PCI_BUS.FM Page 163 Friday, September 12, 1997 9:38 AM
PCI Bus System
Performance E

A PCI frame grabber should, in theory, be able to deliver real-time vid
30 frames per second with an NTSC input and 25 frames per second
a CCIR input, to the computer’s main memory. In practice, the actual
of transfer is dependent on the motherboard and the chip set used o
motherboard. Apparently, not all PCI buses are equal.

There are two considerations here:

• How many video frames can be transferred from the frame grabbe
main memory per second.

• How many video frames can be displayed on the VGA per second

The VGACOPY.EXE program included with the PX software measur
both of these activities.

VGACOPY Measurements

VGACOPY is a DOS program and must be run under DOS, not in a D
window within Windows.

E

 163

Imagenation

per

A

d on
ss
em-

d on
oss
rab-

GA
ys-

atu-
n.

ther-
pa
l
ils

 the

px510.bk : PCI_BUS.FM Page 164 Friday, September 12, 1997 9:38 AM
VGACOPY provides the following measurements:

1 It determines whether or not you can achieve a rate of 30 frames
second from the frame grabber to main memory.

2 It measures the speed of copying a static memory buffer to the VG
card.

3 It measures the number of frames per second that can be displaye
your VGA display when there is only one frame being copied acro
the PCI bus at a time. This measurement grabs a frame to main m
ory and then copies it to the VGA card.

4 It measures the number of frames per second that can be displaye
your VGA display when there are multiple frames being copied acr
the PCI bus at the same time. This measurement puts the frame g
ber into continuous acquire mode and copies each frame to the V
as soon as it is acquired. This process fails completely on some s
tems. The failure is related to the motherboard, the chip set on the
motherboard, and the VGA card. The failure might be caused by s
rating the PCI bus, and as a result no data moves in either directio

The measurements above are more closely related to the type of mo
board than to the speed of the processor. For example, the Intel Zap
motherboard running at 75 MHz produced better results than an Inte
Neptune motherboard running at 90 MHz. Measurement 4, above, fa
completely on a Neptune 90 system with a Diamond Stealth 64 VGA
card, but achieves 30 frames per second on a Zappa 75 system with
same Diamond Stealth 64 card.
164

Appendix E PCI Bus System Performance

ium

nd of

ec-
y
 chips
e

the
ep-

px510.bk : PCI_BUS.FM Page 165 Friday, September 12, 1997 9:38 AM
VGACOPY Tests

Configurations Tested

We have tested the PX frame grabbers with three different Intel Pent
systems and four different PCI VGA cards.

Intel Pentium systems

• Neptune 90 MHz motherboard, Triton chip set.

• Zappa 75 MHz motherboard, Triton chip set.

• Zappa 100 MHz motherboard, Triton chip set.

PCI VGA cards

• Diamond SpeedStar, 1 MB of DRAM.

• Diamond Stealth 64, 2 MB of DRAM.

• Orchid Kelvin, 2 MB of DRAM.

• ATI Mach 64, 2 MB of DRAM.

Test Results

The performance of the Zappa motherboards is dependent on the bra
VGA card when VGA transfers are involved. When VGA transfers are
not involved, the Zappa seems to be able to transfer 30 frames per s
ond, using an NTSC camera, from the frame grabber to main memor
regardless of processor speed. The processor speed of the Pentium
on the Zappa motherboards does affect transfers to the VGA card. W
were able to achieve higher transfer rates with the Zappa 100.

The performance of the Neptune motherboard is also dependent on
brand of VGA card when VGA transfers are involved. However, the N
 165

Imagenation

t able
am-

era

 we
e

sfer
se

px510.bk : PCI_BUS.FM Page 166 Friday, September 12, 1997 9:38 AM
tune does not perform as well as the Zappa in any case. We were no
to achieve a transfer rate of 30 frames per second, using an NTSC c
era, from the frame grabber to main memory with the Neptune.

Here are some of our test results using VGACOPY and an NTSC cam
(all values are in frames per second):

15 frames per second is a theoretical maximum for NTSC video when
grab one frame and then copy it to the VGA card because at least on
field time is lost during the copy.

The measurements above apply only to DOS. You will see lower tran
rates under Windows because of the increased overhead and becau
Windows is a multitasking OS.

Configuration

Grab Frames
and Copy to

VGA
Simultaneously

Grab one
Frame and

Copy to VGA

Zappa 100 & ATI Mach 64 30 15

Zappa 100 & Diamond Stealth 64 30 15

Zappa 100 & Diamond SpeedStar 64 20 10

Zappa 100 & Orchid Kelvin 30 15

Zappa 75 & ATI Mach 64 20 10

Zappa 75 & Diamond Stealth 64 30 15

Zappa 75 & Diamond SpeedStar 64 17 10

Zappa 75 & Orchid Kelvin 20 10

Neptune 90 & ATI Mach 64 20 10

Neptune 90 & Diamond Stealth 64 fails 15

Neptune 90 & Diamond SpeedStar 64 15 10

Neptune 90 & Orchid Kelvin 20 10
166

px510.bk : px510ix.fm Page 167 Friday, September 12, 1997 9:38 AM
Index 8
I

Numerics
26-pin D connector 156
386MAX 17

A
adapter, 15-pin to 26-pin cables 157
addresses

logical 49, 54
physical 50, 55

allocating frame grabbers 46
multiple frame grabbers 46, 82

AUTOEXEC.BAT file 19, 21
automatic synchronization 52

B
binary files 75
block diagram 161–162
BMP files 75, 146
board configuration 64
board diagram 161–162
board revision numbers 11, 63
buffers, Visual Basic 43

C
cables 13, 155–157

15-pin to 26-pin adapter 157
CACHE flag 49, 52, 70, 93, 94, 96
cache RAM 9, 51, 63
camera inputs 57
cameras

progressive-scan 2, 4, 52, 62
resettable 3

capture resolution 71–75
capturing images 47–55
CCIR/PAL 57, 62, 74
color filter 5, 14
CompactPCI bus 2

cables 155
compatibility with PX500 149–154
compiling programs 37–44
CompuServe address 30
CONFIG.SYS file 17, 21
configuration, hardware 64
connectors 13, 155–157
continuous acquire mode 94
converting file formats 139–148
corrupt image data 49
 167

Imagenation

px510.bk : px510ix.fm Page 168 Friday, September 12, 1997 9:38 AM
counting fields 62
cropping images 73
customer support 29–30

D
debounce compensation 58
decimation 6, 71
digital input/output 8, 58
direct memory access 50, 51
directories 26
display controllers 165
DLLs

error loading 27
PXDV 76
PXDV.DLL 77
PXDV95.DLL 77
PXDVNT.DLL 77
Video Display 76
Windows 3.1 38, 39
Windows 3.1 Video Display DLL 77
Windows 95 39
Windows 95 Video Display DLL 77
Windows NT 40
Windows NT Video Display DLL 77
WPX5.DLL 38, 39
WPX5_95.DLL 39
WPX5_NT.DLL 40

DMA 50, 51
DOS Install program 18
drivers

PX500.SYS 24
Windows NT 40

E
EITHER flag 70
EMM386 17
environment variables 19, 21, 28, 31
errors

error loading DLL 27
error loading VxD 27

FILEIT program 142
execution timing 64–70
exiting libraries 44, 122
external triggers 8, 58

debounce 58

F
features, hardware 64
field counter 62
field length 71
FIELD0 flag 70
FIELD1 flag 70
fields, video 62
FILEIT program 139–148

batch processing 144
errors 142

files
AUTOEXEC.BAT 19, 21
BIN format 75
binary 75
BMP format 75, 146
CONFIG.SYS 17, 21
GIF format 147
graphics formats 139
PCIVU.HLP 31
PCIVU.INI 31
PCX format 147
PIC format 147
PXDV.BAS 77
PXDV95.BAS 77
PXDVNT.BAS 77
reading and writing 75
SYSTEM.INI 20, 21, 22
TGA format 148
TIFF format 148
WPG format 148
WPX_95.BAS 43
WPX_NT.BAS 43
WPX5.H 39
WPX5.LIB 39
WPX5_95.H 39
168

Index

px510.bk : px510ix.fm Page 169 Friday, September 12, 1997 9:38 AM
WPX5_95.LIB 39
WPX5_95B.LIB 39
WPX5_NT.H 40
WPX5_NT.LIB 40
WPX5_NTB.LIB 40
WPX5VB.BAS 43
WPXVB.BAS 43

flags 65, 68, 69, 70
CACHE 49, 52, 93, 94, 96

FLATMEM.COM 17, 21
frame buffers

error trying to allocate 48
memory allocation 20, 22
PX500_SIZE variable 20, 22

frame grabber handles 46
frames 48

video 62
freeing frame grabbers 46

PXCLEAR program 47
freeing memory 48
function flags 70
function reference 79–120
function timing 64–70
functions

AllocateAddress() 50, 80
AllocateBuffer() 48, 81
AllocateFG() 46, 81
CacheTriggered() 52, 58, 82
CheckEqual() 61, 83
CheckError() 83
CheckGreater() 61, 84
draw_image() 123, 137
draw_rectangle() 123, 137
draw_scaled_image() 123, 138
edit() 138
ExitLibrary() 44, 85
fill_rectangle() 123, 137
FireStrobe() 60, 85
FrameAddress() 55, 86
FrameBits() 55, 86
FrameBuffer() 49, 54, 87
FrameHeight() 55, 87

FrameWidth() 55, 87
FreeFG() 46, 88
FreeFrame() 48, 88
get_key() 133
GetCamera() 57, 88
GetColumn() 89
GetFieldCount() 62, 89
GetFieldLength() 89
GetFineGain() 56, 90
GetGainRange() 56, 90
GetLUT() 61, 90
GetOffset() 55, 91
GetRectangle() 91
GetRow() 91
GetStrobeState() 92
GetSyncType() 93
GetTriggerType() 93
Grab() 49, 93
GrabContinuous() 49, 94
GrabToCache() 52, 95
GrabTriggered() 49, 58, 95
HaveCache() 63, 96
immediate 68
InitLibrary() 44, 96
IsFinished() 66, 97
KillQueue() 67, 97
menu_calc_dx() 134
menu_calc_dy() 134
menu_display(123
menu_display() 134
menu_erase() 135
menu_generate() 123, 135
menu_select() 123, 136
PutColumn() 98
PutRectangle() 98
PutRow() 99
pxPaintDisplay() 76
pxSetWindowSize() 76
queued 65, 67
ReadBin() 75, 99
ReadBMP() 75, 100
ReadCache() 52, 101
 169

Imagenation

px510.bk : px510ix.fm Page 170 Friday, September 12, 1997 9:38 AM
ReadConfiguration() 101
ReadProtection() 64, 102
ReadRevision() 63, 103
ResetFG() 103
SetCamera() 57, 103
SetCompare() 61, 104
SetCurrentWindow() 104
SetDrivePolarity() 60, 106
SetDriveType() 106
SetFieldCount() 63, 107
SetFieldSize() 107
SetFineGain() 56, 108
SetGainRange() 56, 109
SetImageSize() 71, 110
SetLUT() 61, 111
SetOffset() 55, 112
SetStrobePeriods() 60, 112
SetStrobePolarity() 60, 113
SetStrobeType() 59, 113
SetTriggerType() 58, 114
SetVideoFormat() 52, 60, 71
vg_exit_graph() 122, 127
vg_getbkcolor() 128
vg_getcolor() 129
vg_gotoxy() 122, 123, 129
vg_init_graph() 122, 127
vg_maxx() 129
vg_maxy() 130
vg_print() 122, 123, 130
vg_resizefont() 131
vg_setcolor() 131
vg_setfont() 132
vg_sizex() 132
vg_sizey() 132
vg_wherex() 133
vg_wherey() 133
vga_set_palette() 122, 128
vga_wait_vb() 128
VideoType() 57, 62, 117
Wait() 67, 117
WaitFinished() 118
WaitVB() 67, 118

WriteBin() 75, 119
WriteBMP() 75, 120

G
gain 56, 61
GIF files 147
grabbing images 47–55

incomplete image captures 50
invalid data in buffer 50

graphics file formats 139
grayscale noise 3
grayscale resolution 6, 75

H
handles 46
hardware configuration 64
hardware installation 14–16
hardware protection key 64
hardware specifications 159–160
header files 26

DOS 37, 38
PX5.H 37, 38
Windows 95 39
Windows NT 40
WPX5.H 38, 39
WPX5_95.H 39
WPX5_NT.H 40

I
image cropping 73
image resolution 71–75
image scaling 71
IMAGENATION variable 19, 28, 31
IMMEDIATE flag 68, 69, 70
immediate functions 68
initializing libraries 44, 122
input/output 8, 58
inputs, video 57
INSTALL program 18
170

Index

px510.bk : px510ix.fm Page 171 Friday, September 12, 1997 9:38 AM
installation 13–30
installing the PX board 14–16
installing the PX software 16–26
internal synchronization 53
Internet address 30
interrupt handlers 45
interrupts 45
IRQ conflicts 27, 28, 45

L
languages, programming 37–44
libraries

Borland, DOS 37
compatibility 149–154
compiling and linking 37–44
error when initializing 45
exiting 44, 122
function reference 79–120
general characteristics 36
initializing 44, 122
Microsoft, DOS 37
PX5_FW.LIB 38
PX5_L6.LIB 37
PX5_LB.LIB 37
PX5_LM.LIB 37
PXDV.LIB 77
PXDV95.LIB 77
PXDVNT.LIB 77
troubleshooting 45
VESAMENU 121–138
Watcom DOS/4GW 38
Windows 3.1 38
Windows 3.1 Video Display DLL 77
Windows 95 39
Windows 95 Video Display DLL 77
Windows NT 40
Windows NT Video Display DLL 77
WPX5.LIB 38, 39
WPX5_95.LIB 39
WPX5_95B.LIB 39
WPX5_NT.LIB 40

WPX5_NTB.LIB 40
linking programs 37–44
logical addresses 49, 54
lookup table 60
LUT, see lookup table

M
memory

allocation variable 20, 22
freeing 48
managers 17
requirements 16, 23, 25, 45

memory_size registry key 23
menus 121–138
motherboards 165
MSD program 17
multitasking and multithreaded operating

systems 41

N
non-interlaced video 4, 62
NonPagedPoolSize registry key 25
non-standard video formats 52
NTSC 57, 62, 74

O
offset 55
operating systems 37–44

multitasking and multithreaded 41
Windows 95 39
Windows NT 40

P
PAL 57, 62
PATH variable 19, 21
PC/104-Plus bus 2

cables 157
PCI BIOS 45
 171

Imagenation

px510.bk : px510ix.fm Page 172 Friday, September 12, 1997 9:38 AM
PCI bus 6, 78, 163–166
cables 155

PCIVU program 31–34
troubleshooting 27

PCIVU.HLP file 31
PCIVU.INI file 31
PCX files 147
performance 11, 78, 163–166
physical addresses 50, 55
PIC files 147
pixel decimation 6, 71
pixel jitter 3
pixel values

comparing 61
lookup table 60

pointers 42, 49, 54
programming 35–78
programming languages 37–44
programs

compiling and linking 37–44
directory location 26
FILEIT 139–148
INSTALL 18
MSD 17
PCIVU 27, 31–34
PXCLEAR 11, 47
PXGDI1 11
PXGDI2 11
PXGDI3 11
PXREV 11, 27
SETUP 18
VGACOPY 11, 163

progressive-scan cameras 2, 4, 52, 62
protection key, hardware 64
purging the function queue 67
PX5 directory 26
PX5.H file 37, 38
PX5_95.VXD virtual device driver 39, 40
PX5_FW.LIB library 38
PX5_L6.LIB library 37
PX5_LB.LIB library 37
PX5_LM.LIB library 37

PX500 frame grabber
15-pin to 26-pin adapter 157
compatibility with PX510 149–154

PX500.SYS driver 24, 40
PX500.VXD virtual device driver 20, 38
PX500_SIZE variable 20, 22
PX510 frame grabber

cables 155
features 2

PX610 frame grabber
cables 155
features 2
progressive-scan feature 4

PXCLEAR program 11, 47
PXDV.BAS file 77
PXDV.DLL 77
PXDV.LIB library 77
PXDV95.BAS file 77
PXDV95.DLL 77
PXDV95.LIB library 77
PXDVNT.BAS file 77
PXDVNT.DLL 77
PXDVNT.LIB library 77
PXGDI1 program 11
PXGDI2 program 11
PXGDI3 program 11
PXREV program 11

troubleshooting 27

Q
QEMM 17
queue structure under Windows NT 67
QUEUED flag 65, 69, 70
queued functions 65, 67

R
registry, Windows 95 22
registry, Windows NT 24
resettable cameras 3
resolution 71–75
172

Index

px510.bk : px510ix.fm Page 173 Friday, September 12, 1997 9:38 AM
return values, FILEIT program 142
revision numbers 11, 63
RS-170 standard 62

S
sample programs, see programs
sampling range 56
scaling images 71
security 64
SETUP program 18
SINGLE_FLD flag 70
single-field synchronization 53
software

directories 26
installation 16–26
security 64
updates 30

source code directory location 26
specifications 159–160
StaticVxD registry key 23
strobes 8, 59, 112, 113
structures

colors 124
menu 123, 125
menuitem 123, 126

support 29–30
sync signals, output 60
synchronization modes 52
synchronization timing 3, 60
synchronizing program execution to vid-

eo 67
system files 19, 20
SYSTEM.INI file 20, 21, 22

T
technical support 29–30
TGA files 148
TIFF files 148
timing, function execution 64–70

triggers 8, 58
debounce 58

troubleshooting
AllocateBuffer() 48
AllocateFG() 46
Borland 32-bit programs 39, 40
can’t allocate a frame grabber 46
can’t allocate frames 48
corrupt image data 49
error loading DLL 27
error loading VxD 27
freeing frame grabbers 47
GetColumn(), GetRectangle(),

GetRow() 55
grab functions fail 49
grabbing images 50
image is all black 49
incomplete image 50
InitLibrary() 45
invalid data in buffer 50
IRQ conflicts 27, 28, 45
library fails to initialize 45
partial image 28
PCIVU program 27
PutColumn(), PutRectangle(),

PutRow() 55
PXREV program 27
slow video display performance 28
Windows 28

U
updates, software 30
user interface 121–138
user synchronizatoin 53
utility programs, see programs

V
vertical resolution 72
VESA display drivers 27
 173

Imagenation

px510.bk : px510ix.fm Page 174 Friday, September 12, 1997 9:38 AM
VESAMENU library 121–138
VGA cards 165
VGACOPY program 11, 163
video

cache RAM 9, 51, 63
field length 71
fields 62
formats 57, 62
frames 62
gain 56, 61
inputs 57
non-standard formats 52
offset 55
sampling 62
synchronization 52

Video Display DLL 76
virtual device drivers 20, 38, 39, 40, 45
Visual Basic

buffers 43
declarations 43
End button 44
programming tips 42
Video Display DLL 76

VxD 20, 38, 39, 40, 45
error loading 27

W
WEN signals 3, 53
window enable signal 3
Windows

troubleshooting 28

Windows 95 39
programming tips 39
registry changes 22
virtual device driver 40

Windows NT
AllocateAddress() 51
DLL function differences 41
FrameAddress() 55
programming tips 40
PX500.SYS driver 40
queue structure 67
registry changes 24

Windows Setup program 18
WPG files 148
WPX_95.BAS file 43
WPX_NT.BAS file 43
WPX5.DLL 38, 39
WPX5.H file 38, 39
WPX5.LIB file 39
WPX5.LIB library 38
WPX5_95.DLL 39
WPX5_95.H file 39
WPX5_95.LIB file 39
WPX5_95B.LIB file 39
WPX5_NT.DLL 40
WPX5_NT.H file 40
WPX5_NT.LIB file 40
WPX5_NTB.LIB file 40
WPX5VB.BAS file 43
WPXVB.BAS file 43
174

	Introduction
	Precision Capture Hardware
	Video Inputs and Formats
	Video Capture Modes and Resolution
	Image Capture Modes
	Capture Resolution

	Real-Time Image Data Transfer
	PCI Bus Master Design
	Selectable Destination for Image Captures

	Processing Video Input
	Offset and Gain Adjustments
	Input Lookup Table (LUT)

	Input/Output
	Trigger
	Strobes
	Output Sync Signals

	Optional Video Cache RAM
	Programming Libraries and DLLs
	The PCIVU Program
	Utility Programs
	FILEIT
	PXREV
	VGACOPY
	PXCLEAR

	Next Steps...

	Installing Your Frame Grabber
	Do You Need a Cable?
	Standard PCI-Bus Cables
	PC/104-Plus Cables

	Installing Your Board
	Installing the Software
	DOS, DOS/4GW, and Windows�3.1 Software Installatio...
	Windows 95 Software Installation
	Windows NT Software Installation
	PX Software Directories

	Troubleshooting
	Error Loading DLL
	Error Loading VxD
	Problems Running PCIVU or PXREV
	Slow Video Display Performance
	Windows Hangs or Crashes on Boot

	Technical Support

	The PCIVU Application
	Setting Up PCIVU
	Starting PCIVU
	Running PCIVU with More Than One Frame Grabber

	Using PCIVU

	Programming PX Frame Grabbers
	General Library Characteristics
	Operating System and Language Specifics
	DOS Programming
	Watcom DOS/4GW Programming
	Windows 3.1 Programming
	Windows�95 Programming
	Windows�NT Programming
	Programming in a Multithreaded, Multitasking Envir...
	Visual Basic Programming

	Initializing and Exiting the Library
	Allocating and Freeing Frame Grabbers
	The PXCLEAR Utility

	Grabbing Images
	Frames
	Functions for Grabbing to Frames
	Sending Images Directly to Another PCI Device
	Sending Images to the Onboard Video Cache RAM
	Grabbing Images with Non-Standard Video Formats
	Accessing Frame Data

	Setting Video Offset and Gain
	Video Offset
	Video Gain

	Selecting Camera Inputs
	Input/Output
	Trigger
	Strobes
	Synchronization Drive Signals

	Using the Input Lookup Table (LUT)
	Getting Information about Incoming Video
	Checking Pixel Values
	Video Format
	Counting Fields

	Reading Frame Grabber Information
	Video Cache RAM
	Board Revision Number
	Hardware Protection Key
	Board Configuration

	Timing the Execution of Functions
	Queued Functions
	Synchronizing Program Execution to Video
	Purging the Queue
	Queue Structure under Windows�NT
	Immediate Functions
	Function Timing Summary

	Using Flags with Function Calls
	Specifying Image Capture Resolution
	Scaling Images
	Cropping Images
	Grayscale Resolution

	Frame and File Input/Output
	BMP Files
	Binary Files

	Using the Video Display DLL
	Developing a Menu-Based User Interface for DOS App...
	Frame Grabbing and PCI Bus Performance

	Function Reference
	VESAMENU Library
	Initializing and Exiting the Library
	VGA Text and Image Display
	Menu Creation, Configuration, and Display
	Menu Structures and Types
	Function Reference
	VESA and VGA Functions
	VESA Text Functions
	Menu Functions
	Graphics Functions
	Editing Functions

	The FILEIT File Conversion Program
	Syntax
	Examples
	Return Values
	Batch File Processing
	Notes on Format Conversions

	PX500 Compatibility
	New Features in the PX510 and PX610
	Non-Interlaced, Progressive-Scan Video Support
	Horizontal and Vertical Cropping and Scaling
	Horizontal and Vertical Sync Drive Signals
	Programmable Strobe Lines
	Full-Size (768x576) CCIR/PAL Images
	+12V Power Line
	26-Pin D Connector

	Changes in the PX Libraries
	New Strobe Functions
	New Sync Drive Signal Functions
	New Video Format Functions
	Other New Functions
	Changes to Existing Version 1.x Functions

	Cables and Connectors
	Standard PCI Bus and CompactPCI Bus Cables
	26-pin D Connector
	Connecting the +12V Output
	26-Pin to 15-Pin Adapter for PX500 Cables

	PC/104-Plus Cables

	Hardware Specifications
	Block Diagram
	PCI Bus System Performance
	VGACOPY Measurements
	VGACOPY Tests
	Configurations Tested
	Test Results

	Index

